A conserved tooth resorption mechanism in modern and fossil snakes

[1]  A. Degen,et al.  Replacement of fangs in a free-ranging desert viperid, Cerastes vipera. , 2022, Zoology.

[2]  OUP accepted manuscript , 2022, Zoological Journal of the Linnean Society.

[3]  O. Panagiotopoulou,et al.  Plicidentine and the repeated origins of snake venom fangs , 2021, Proceedings of the Royal Society B.

[4]  M. Doschak,et al.  Tooth attachment and pleurodont implantation in lizards: Histology, development, and evolution , 2020, Journal of anatomy.

[5]  S. Pierce,et al.  Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles , 2020, Nature Communications.

[6]  Krister T. Smith,et al.  Constrictores Oppel, 1811 – the available name for the taxonomic group uniting boas and pythons , 2020 .

[7]  K. Queiroz**,et al.  Phylonyms : A Companion to the PhyloCode , 2020 .

[8]  Felipe G. Grazziotin,et al.  Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. , 2020, Systematic biology.

[9]  Michael S. Y. Lee,et al.  New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan , 2019, Science Advances.

[10]  Michael S. Y. Lee,et al.  Novel vascular plexus in the head of a sea snake (Elapidae, Hydrophiinae) revealed by high-resolution computed tomography and histology , 2019, Royal Society Open Science.

[11]  M. Caldwell,et al.  Mosasaurs and snakes have a periodontal ligament: timing and extent of calcification, not tissue complexity, determines tooth attachment mode in reptiles , 2017, Journal of anatomy.

[12]  T. Reeder,et al.  Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction , 2017 .

[13]  T. Diekwisch,et al.  Varanoid Tooth Eruption and Implantation Modes in a Late Cretaceous Mosasaur , 2016, Front. Physiol..

[14]  M. Archer,et al.  Developing a radiometrically-dated chronologic sequence for Neogene biotic change in Australia, from the Riversleigh World Heritage Area of Queensland , 2016 .

[15]  D. Martill,et al.  A four-legged snake from the Early Cretaceous of Gondwana , 2015, Science.

[16]  A. Palci,et al.  The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution , 2015, Nature Communications.

[17]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[18]  A. Palci,et al.  Emended Diagnosis and Phylogenetic Relationships of the Upper Cretaceous Fossil Snake Najash rionegrina Apesteguía and Zaher, 2006 , 2013 .

[19]  O. Rieppel “Regressed” Macrostomatan Snakes , 2012 .

[20]  J. Gauthier,et al.  A transitional snake from the Late Cretaceous period of North America , 2012, Nature.

[21]  O. Rieppel,et al.  Assembling the Squamate Tree of Life: Perspectives from the Phenotype and the Fossil Record , 2012 .

[22]  H. Zaher,et al.  The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited , 2012 .

[23]  E. Maxwell,et al.  Histology of tooth attachment tissues and plicidentine in Varanus (Reptilia: Squamata), and a discussion of the evolution of amniote tooth attachment , 2011, Journal of morphology.

[24]  J. S. Cooper Tooth replacement in the Slow worm (Anguis fragilis) , 2009 .

[25]  Evlambia Harokopakis-Hajishengallis Physiologic root resorption in primary teeth: molecular and histological events. , 2007, Journal of oral science.

[26]  O. Rieppel,et al.  An Investigation into the Occurrence of Plicidentine in the Teeth of Squamate Reptiles , 2006, Copeia.

[27]  D. Mahler,et al.  The Palatal Dentition in Squamate Reptiles: Morphology, Development, Attachment, and Replacement , 2006 .

[28]  M. Caldwell,et al.  TOOTH SOCKET HISTOLOGY IN THE CRETACEOUS SNAKE DINILYSIA, WITH A REVIEW OF AMNIOTE DENTAL ATTACHMENT TISSUES , 2006 .

[29]  J. Scanlon Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene , 2006, Nature.

[30]  C. Minkin Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function , 1982, Calcified Tissue International.

[31]  W. Addison Enzyme histochemical characteristics of human and kitten odontoclasts and kitten osteoclasts: a comparative study using whole cells , 1979, The Histochemical Journal.

[32]  O. Rieppel Tooth replacement in anguinomorph lizards , 1978, Zoomorphologie.

[33]  J. Sire,et al.  Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation , 2004, Cell and Tissue Research.

[34]  H. Fukushima,et al.  Expression and role of RANKL in periodontal ligament cells during physiological root-resorption in human deciduous teeth. , 2003, European journal of oral sciences.

[35]  W. Götz,et al.  Immunohistochemical Localization of Receptor Activator of Nuclear Factor KappaB (RANK) and its Ligand (RANKL) in Human Deciduous Teeth , 2002, Calcified Tissue International.

[36]  N. Sahara Cellular events at the onset of physiological root resorption in rabbit deciduous teeth , 2001, The Anatomical record.

[37]  J. Wistuba,et al.  The odontoclasts of Ambystoma mexicanum. , 2000, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[38]  O. Rieppel,et al.  A fossil snake with limbs. , 2000, Science.

[39]  A. Oyarzún,et al.  Microscopic and histochemical study of odontoclasts in physiologic resorption of teeth of the polyphyodont lizard, Liolaemus gravenhorsti , 1999, Journal of morphology.

[40]  J. Sire,et al.  Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. , 1998, European journal of oral sciences.

[41]  Michael S. Y. Lee,et al.  A snake with legs from the marine Cretaceous of the Middle East , 1997, Nature.

[42]  M.S.Y. Lee On snake-like dentition in mosasaurian lizards , 1997 .

[43]  Michael S. Y. Lee The phylogeny of varanoid lizards and the affinities of snakes , 1997 .

[44]  Uetz Peter,et al.  The Reptile Database , 1995 .

[45]  T. Deguchi,et al.  Odontoclastic resorption at the pulpal surface of coronal dentin prior to the shedding of human deciduous teeth. , 1992, Archives of histology and cytology.

[46]  E. N. Arnold A cladisticization: phylogenetic relationships of the lizard families. , 1989, Science.

[47]  Lennart Hammarstrom,et al.  The role of the necrotic periodontal membrane in cementum resorption and ankylosis. , 1985, Endodontics & dental traumatology.

[48]  D. Cahill,et al.  Experimental study in the dog of the non-active role of the tooth in the eruptive process. , 1984, Archives of oral biology.

[49]  G. Wise,et al.  The cytology of the dental follicle and adjacent alveolar bone during tooth eruption in the dog. , 1983, The American journal of anatomy.

[50]  A. Edmund,et al.  Sequence and rate of tooth replacement in the crocodilia , 1962 .

[51]  A. Edmund Tooth replacement phenomena in the lower vertebrates , 1960 .

[52]  AmERICAN Museum Tooth Implantation and Replacement in Squamates , with Special Reference to Mosasaur Lizards and Snakes HUSSAM ZAHER ' AND OLIVIER RIEPPEL , 2022 .