A SYNTHETIC APPROACH TO MULTIOBJECTIVE OPTIMIZATION
暂无分享,去创建一个
[1] Vilfredo Pareto,et al. Cours d'économie politique : professé à l'Université de Lausanne , 1896 .
[2] Vilfredo Pareto,et al. Manuale di economia politica : con una introduzione alla scienza sociale , 1906 .
[3] R. Thom. Les singularites des applications differentiables , 1956 .
[4] Généralisation de la théorie de Morse aux variétés feuilletées , 1964 .
[5] V. Arnold. SINGULARITIES OF SMOOTH MAPPINGS , 1968 .
[6] I. R. Porteous,et al. SIMPLE SINGULARITIES OF MAPS , 1971 .
[7] John Guckenheimer. Review: René Thom, Stabilité Structurelle et Morphogénèse, Essai d'une Théorie Générale des Modèles , 1973 .
[8] S. Smale,et al. Global analysis and economics V: Pareto theory with constraints , 1974 .
[9] Y. Wan,et al. Morse theory for two functions , 1975 .
[10] S. Smale,et al. Global Analysis and Economics I: Pareto Optimum and a Generalization of Morse Theory† , 1975 .
[11] Yieh-Hei Wan. On local Pareto optima , 1975 .
[12] Harold Levine,et al. Stable maps: An introduction with low dimensional examples , 1976 .
[13] W. de Melo,et al. On the structure of the pareto set of generic mappings , 1976 .
[14] S. Smale. Convergent process of price adjust-ment and global newton methods , 1976 .
[15] W. De Melo,et al. Stability and optimization of several functions , 1976 .
[16] G. Debreu,et al. Regular Differentiable Economies , 1976 .
[17] Y. Wan,et al. On the algebraic criteria for local Pareto optima—I , 1977 .
[18] Yieh Hei Wan. On the algebraic criteria for local Pareto optima. II , 1978 .
[19] Yieh-Hei Wan. On the structure and stability of local Pareto optima in a pure exchange economy , 1978 .
[20] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[21] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[22] Ian Stewart,et al. Elementary catastrophe theory , 1983 .
[23] Alexander Varchenko,et al. The classification of critical points, caustics and wave fronts , 1985 .
[24] J. R J Rao,et al. Nonlinear programming continuation strategy for one parameter design optimization problems , 1989 .
[25] M. E. Johnson,et al. Minimax and maximin distance designs , 1990 .
[26] R. T. Haftka,et al. Tracing the Efficient Curve for Multi-objective Control-Structure Optimization , 1991 .
[27] G. Debreu,et al. Stephen Smale and the Economic Theory of General Equilibrium , 1993 .
[28] Layne T. Watson,et al. Multi-Objective Control-Structure Optimization via Homotopy Methods , 1993, SIAM J. Optim..
[29] Yaroslav D. Sergeyev,et al. An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..
[30] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[31] David P. Dobkin,et al. The quickhull algorithm for convex hulls , 1996, TOMS.
[32] Donald R. Jones,et al. Global versus local search in constrained optimization of computer models , 1998 .
[33] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[34] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[35] C. F. Jeff Wu,et al. Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .
[36] I. Sobola,et al. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .
[37] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[38] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[39] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[40] Roman G. Strongin,et al. Global Optimization: Fractal Approach and Non-redundant Parallelism , 2003, J. Glob. Optim..
[41] DAVID MUMFORD,et al. Global Analysis , 2003 .
[42] A. Messac,et al. The normalized normal constraint method for generating the Pareto frontier , 2003 .
[43] I. Sobol. Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .
[44] A. Messac,et al. Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .
[45] S. Ruzika,et al. Approximation Methods in Multiobjective Programming , 2005 .
[46] Zelda B. Zabinsky,et al. Comparative Assessment of Algorithms and Software for Global Optimization , 2005, J. Glob. Optim..
[47] Linet Özdamar,et al. TRIOPT: a triangulation-based partitioning algorithm for global optimization , 2005 .
[48] Enrico Miglierina,et al. Convergence of Minimal Sets in Convex Vector Optimization , 2005, SIAM J. Optim..
[49] P. Fantini,et al. A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization , 2005 .
[50] T. Q. Phong,et al. Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems , 2005, SIAM J. Optim..
[51] Joshua D. Knowles,et al. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.
[52] Yaroslav D. Sergeyev,et al. Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..
[53] William J. Welch,et al. Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization , 2006 .
[54] János D. Pintér,et al. Nonlinear optimization with GAMS /LGO , 2007, J. Glob. Optim..
[55] E. E. Myshetskaya,et al. Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..
[56] Hirotaka Nakayama,et al. Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.
[57] Dinh The Luc,et al. Generating the weakly efficient set of nonconvex multiobjective problems , 2008, J. Glob. Optim..
[58] Enrico Miglierina,et al. Critical Points Index for Vector Functions and Vector Optimization , 2008 .
[59] Achille Messac,et al. A computationally efficient metamodeling approach for expensive multiobjective optimization , 2008 .
[60] Donald R. Jones,et al. Global optimization of deceptive functions with sparse sampling , 2008 .
[61] J. Neumann,et al. Structural Stability, Catastrophe Theory, and Applied Mathematics: The John von Neumann Lecture, 1976 , 2008 .
[62] János D. Pintér,et al. Global Optimization in Practice:State of the Art and Perspectives , 2009 .
[63] Jörg Fliege,et al. Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..
[64] Víctor Pereyra,et al. Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems , 2009, Math. Comput. Simul..
[65] Sergei S. Kucherenko,et al. Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..
[66] Yaroslav D. Sergeyev,et al. A univariate global search working with a set of Lipschitz constants for the first derivative , 2009, Optim. Lett..
[67] Y. Wan. On the algebraic criteria for local Pareto optima. II , 1978 .
[68] Sonja Kuhnt,et al. Design and analysis of computer experiments , 2010 .