A SYNTHETIC APPROACH TO MULTIOBJECTIVE OPTIMIZATION

We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale (Dynamical systems, Academic Press, New York (1973) 531{ 544). We speak about synthetic approach because the optimal set is natively approximated by means of a compound geometrical object, i.e., a simplicial complex, rather than by an unstructured scatter of individual optima. The method distinguishes the hierarchy between singular set, Pareto critical set and stable Pareto critical set. Furthermore, a quadratic convergence result in set wise sense is proven and tested over numerical examples.

[1]  Vilfredo Pareto,et al.  Cours d'économie politique : professé à l'Université de Lausanne , 1896 .

[2]  Vilfredo Pareto,et al.  Manuale di economia politica : con una introduzione alla scienza sociale , 1906 .

[3]  R. Thom Les singularites des applications differentiables , 1956 .

[4]  Généralisation de la théorie de Morse aux variétés feuilletées , 1964 .

[5]  V. Arnold SINGULARITIES OF SMOOTH MAPPINGS , 1968 .

[6]  I. R. Porteous,et al.  SIMPLE SINGULARITIES OF MAPS , 1971 .

[7]  John Guckenheimer Review: René Thom, Stabilité Structurelle et Morphogénèse, Essai d'une Théorie Générale des Modèles , 1973 .

[8]  S. Smale,et al.  Global analysis and economics V: Pareto theory with constraints , 1974 .

[9]  Y. Wan,et al.  Morse theory for two functions , 1975 .

[10]  S. Smale,et al.  Global Analysis and Economics I: Pareto Optimum and a Generalization of Morse Theory† , 1975 .

[11]  Yieh-Hei Wan On local Pareto optima , 1975 .

[12]  Harold Levine,et al.  Stable maps: An introduction with low dimensional examples , 1976 .

[13]  W. de Melo,et al.  On the structure of the pareto set of generic mappings , 1976 .

[14]  S. Smale Convergent process of price adjust-ment and global newton methods , 1976 .

[15]  W. De Melo,et al.  Stability and optimization of several functions , 1976 .

[16]  G. Debreu,et al.  Regular Differentiable Economies , 1976 .

[17]  Y. Wan,et al.  On the algebraic criteria for local Pareto optima—I , 1977 .

[18]  Yieh Hei Wan On the algebraic criteria for local Pareto optima. II , 1978 .

[19]  Yieh-Hei Wan On the structure and stability of local Pareto optima in a pure exchange economy , 1978 .

[20]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[21]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[22]  Ian Stewart,et al.  Elementary catastrophe theory , 1983 .

[23]  Alexander Varchenko,et al.  The classification of critical points, caustics and wave fronts , 1985 .

[24]  J. R J Rao,et al.  Nonlinear programming continuation strategy for one parameter design optimization problems , 1989 .

[25]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[26]  R. T. Haftka,et al.  Tracing the Efficient Curve for Multi-objective Control-Structure Optimization , 1991 .

[27]  G. Debreu,et al.  Stephen Smale and the Economic Theory of General Equilibrium , 1993 .

[28]  Layne T. Watson,et al.  Multi-Objective Control-Structure Optimization via Homotopy Methods , 1993, SIAM J. Optim..

[29]  Yaroslav D. Sergeyev,et al.  An Information Global Optimization Algorithm with Local Tuning , 1995, SIAM J. Optim..

[30]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[31]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[32]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[33]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[34]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[35]  C. F. Jeff Wu,et al.  Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .

[36]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[37]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[38]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[39]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[40]  Roman G. Strongin,et al.  Global Optimization: Fractal Approach and Non-redundant Parallelism , 2003, J. Glob. Optim..

[41]  DAVID MUMFORD,et al.  Global Analysis , 2003 .

[42]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[43]  I. Sobol Global Sensitivity Indices for Nonlinear Mathematical Models , 2004 .

[44]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[45]  S. Ruzika,et al.  Approximation Methods in Multiobjective Programming , 2005 .

[46]  Zelda B. Zabinsky,et al.  Comparative Assessment of Algorithms and Software for Global Optimization , 2005, J. Glob. Optim..

[47]  Linet Özdamar,et al.  TRIOPT: a triangulation-based partitioning algorithm for global optimization , 2005 .

[48]  Enrico Miglierina,et al.  Convergence of Minimal Sets in Convex Vector Optimization , 2005, SIAM J. Optim..

[49]  P. Fantini,et al.  A method for generating a well-distributed Pareto set in nonlinear multiobjective optimization , 2005 .

[50]  T. Q. Phong,et al.  Scalarizing Functions for Generating the Weakly Efficient Solution Set in Convex Multiobjective Problems , 2005, SIAM J. Optim..

[51]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[52]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[53]  William J. Welch,et al.  Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization , 2006 .

[54]  János D. Pintér,et al.  Nonlinear optimization with GAMS /LGO , 2007, J. Glob. Optim..

[55]  E. E. Myshetskaya,et al.  Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..

[56]  Hirotaka Nakayama,et al.  Meta-Modeling in Multiobjective Optimization , 2008, Multiobjective Optimization.

[57]  Dinh The Luc,et al.  Generating the weakly efficient set of nonconvex multiobjective problems , 2008, J. Glob. Optim..

[58]  Enrico Miglierina,et al.  Critical Points Index for Vector Functions and Vector Optimization , 2008 .

[59]  Achille Messac,et al.  A computationally efficient metamodeling approach for expensive multiobjective optimization , 2008 .

[60]  Donald R. Jones,et al.  Global optimization of deceptive functions with sparse sampling , 2008 .

[61]  J. Neumann,et al.  Structural Stability, Catastrophe Theory, and Applied Mathematics: The John von Neumann Lecture, 1976 , 2008 .

[62]  János D. Pintér,et al.  Global Optimization in Practice:State of the Art and Perspectives , 2009 .

[63]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[64]  Víctor Pereyra,et al.  Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems , 2009, Math. Comput. Simul..

[65]  Sergei S. Kucherenko,et al.  Derivative based global sensitivity measures and their link with global sensitivity indices , 2009, Math. Comput. Simul..

[66]  Yaroslav D. Sergeyev,et al.  A univariate global search working with a set of Lipschitz constants for the first derivative , 2009, Optim. Lett..

[67]  Y. Wan On the algebraic criteria for local Pareto optima. II , 1978 .

[68]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .