Phototropins 1 and 2: versatile plant blue-light receptors.

[1]  P. Jarvis,et al.  Stomatal physiology , 2004, Photosynthesis Research.

[2]  E. Spalding,et al.  Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber , 1989, Planta.

[3]  S. Lurie The effect of wavelength of light on stomatal opening , 2004, Planta.

[4]  Yoshikatsu Sato,et al.  Chloroplast movement. , 2003, Annual review of plant biology.

[5]  Keith Moffat,et al.  Photoexcited Structure of a Plant Photoreceptor Domain Reveals a Light-Driven Molecular Switch Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010475. , 2002, The Plant Cell Online.

[6]  T. Kagawa,et al.  Blue light-induced chloroplast relocation. , 2002, Plant & cell physiology.

[7]  J. Schroeder,et al.  GUARD CELL SIGNAL TRANSDUCTION. , 2003, Annual review of plant physiology and plant molecular biology.

[8]  Ken-ichiro Shimazaki,et al.  phot1 and phot2 mediate blue light regulation of stomatal opening , 2001, Nature.

[9]  W. Eisenreich,et al.  An optomechanical transducer in the blue light receptor phototropin from Avena sativa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Folta,et al.  Photocontrol of stem growth. , 2001, Current opinion in plant biology.

[11]  J. Christie,et al.  Phototropins: a new family of flavin-binding blue light receptors in plants. , 2001, Antioxidants & redox signaling.

[12]  Winslow R. Briggs,et al.  The Photocycle of a Flavin-binding Domain of the Blue Light Photoreceptor Phototropin* , 2001, The Journal of Biological Chemistry.

[13]  K. Folta,et al.  Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. , 2001, The Plant journal : for cell and molecular biology.

[14]  Masahiro Kasahara,et al.  Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J C Watson,et al.  The Phototropin Family of Photoreceptors , 2001, Plant Cell.

[16]  J. Ecker,et al.  Phototropin-related NPL1 controls chloroplast relocation induced by blue light , 2001, Nature.

[17]  S. Ishiguro,et al.  Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. , 2001, Science.

[18]  K. Moffat,et al.  Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Iino Chapter 23 Phototropism in higher plants , 2001 .

[20]  R. Kaldenhoff,et al.  Light-induced stomatal movement of selected Arabidopsis thaliana mutants. , 2000, Journal of experimental botany.

[21]  J. Christie,et al.  Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. , 2000, Biochemistry.

[22]  E. Spalding Ion channels and the transduction of light signals. , 2000, Plant, cell & environment.

[23]  H. Frank,et al.  Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. , 2000, Biochemistry.

[24]  R. Bogomolni,et al.  Reversal of blue light-stimulated stomatal opening by green light. , 2000, Plant & cell physiology.

[25]  D. Koller,et al.  Plants in search of sunlight , 2000 .

[26]  T. Kagawa,et al.  Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation. , 2000, Plant & cell physiology.

[27]  C. Ballaré,et al.  Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. , 2000, Plant physiology.

[28]  R. Bogomolni,et al.  The ultraviolet action spectrum for stomatal opening in broad bean. , 2000, Plant physiology.

[29]  A. Trewavas,et al.  Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Toshinori Kinoshita,et al.  Blue light activates the plasma membrane H+‐ATPase by phosphorylation of the C‐terminus in stomatal guard cells , 1999, The EMBO journal.

[31]  J. Christie,et al.  LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Liscum,et al.  Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. , 1999, Plant physiology.

[33]  I. Zhulin,et al.  PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light , 1999, Microbiology and Molecular Biology Reviews.

[34]  T. Kinoshita,et al.  BLUE LIGHT ACTIVATES THE PLASMA MEMBRANE H^+-ATPASE IN GUARD CELLS FROM VICIA FABAL. , 1999 .

[35]  W. Haupt Chloroplast Movement: from Phenomenology to Molecular Biology , 1999 .

[36]  E. Huala,et al.  Blue-light photoreceptors in higher plants. , 1999, Annual review of cell and developmental biology.

[37]  J. Zhu,et al.  Stomata from npq1, a zeaxanthin-less Arabidopsis mutant, lack a specific response to blue light. , 1999, Plant & cell physiology.

[38]  P Reymond,et al.  Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. , 1998, Science.

[39]  O. Smirnova,et al.  Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism , 1998, Nature.

[40]  E. Zeiger,et al.  Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells , 1998 .

[41]  M. Montagu,et al.  A gene encoding caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) from Populus trichocarpa (Accession No. AJ223621) , 1998 .

[42]  P. Oeller,et al.  Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. , 1997, Science.

[43]  J. S. Parkinson,et al.  Copyright © 1997, American Society for Microbiology A Signal Transducer for Aerotaxis in Escherichia coli , 1997 .

[44]  S. Austin,et al.  Azotobacter vinelandii NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation genes via a redox-sensitive switch. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  T. Hunter,et al.  The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification 1 , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  E. Liscum,et al.  Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. , 1995, The Plant cell.

[47]  W. Briggs,et al.  The Transduction of Blue Light Signals in Higher Plants , 1994 .

[48]  P. Reymond,et al.  Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[49]  M. Moore,et al.  Use of a site-directed triple mutant to trap intermediates: demonstration that the flavin C(4a)-thiol adduct and reduced flavin are kinetically competent intermediates in mercuric ion reductase. , 1990, Biochemistry.

[50]  L. Pratt,et al.  Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Baskin,et al.  AN ACTION SPECTRUM IN THE BLUE and ULTRAVIOLET FOR PHOTOTROPISM IN ALFALFA * , 1987 .

[52]  P. Karlsson Blue light regulation of stomata in wheat seedlings. II. Action spectrum and search for action dichroism , 1986 .

[53]  C. Williams,et al.  Reaction of both active site thiols of reduced thioredoxin reductase with N-ethylmaleimide. , 1985, Biochemistry.

[54]  J. Schroeder,et al.  Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba , 1985, Nature.

[55]  C. Field,et al.  Photocontrol of the Functional Coupling between Photosynthesis and Stomatal Conductance in the Intact Leaf : Blue Light and Par-Dependent Photosystems in Guard Cells. , 1982, Plant physiology.

[56]  T. Ogawa Blue light response of stomata with starch-containing (Vicia faba) and starch-deficient (Allium cepa) guard cells under background illumination with red light , 1981 .

[57]  D. Cosgrove Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, AND GENERAL CHARACTERISTICS. , 1981, Plant physiology.

[58]  V. Gaba,et al.  Two separate photoreceptors control hypocotyl growth in green seedlings , 1979, Nature.

[59]  E. Zeiger,et al.  Light and Stomatal Function: Blue Light Stimulates Swelling of Guard Cell Protoplasts , 1977, Science.

[60]  G. Meijer RAPID GROWTH INHIBITION OF GHERKIN HYPOCOTYLS IN BLUE LIGHT1 , 1968 .

[61]  P. Kuiper,et al.  Dependence upon Wavelength of Stomatal Movement in Epidermal Tissue of Senecio odoris. , 1964, Plant physiology.

[62]  W. Briggs Chapter 8 – PHOTOTROPISM IN HIGHER PLANTS1 , 1964 .

[63]  W. Shropshire,et al.  Action Spectrum of Phototropic Tip-Curvature of Avena. , 1958, Plant physiology.

[64]  H. Yin DIAPHOTOTROPIC MOVEMENT OF THE LEAVES OF MALVA NEGLECTA , 1938 .

[65]  N. Bohr Light and Life , 1933, Nature.

[66]  H. Sierp Untersuchungen über die Öffnungsbewegung der Stomata in verschiedenen Spektralbezirken , 1933 .

[67]  F. Darwin,et al.  On a New Method of Estimating the Aperture of Stomata , 1911 .

[68]  G. Senn Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren , 1910, Nature.

[69]  F. Darwin Observations on stomata , 1898, Proceedings of the Royal Society of London.

[70]  S. H. Vines Lectures on the physiology of plants , 1886 .

[71]  C. Darwin Power of Movement in Plants , 1880 .