Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms

This article extends the author's past work [Inv. Probl. Imaging, 10:2 (2016), 433--459] to attenuated X-ray transforms, where the attenuation is complex-valued and only depends on position. We give a positive and constructive answer to the attenuated tensor tomography problem on the Euclidean unit disc in fan-beam coordinates. For a tensor of arbitrary order, we propose an equivalent tensor of the same order which can be uniquely and stably reconstructed from its attenuated transform, as well as an explicit and efficient procedure to do so.

[1]  Jan-Olov Strömberg,et al.  Novikov’s inversion formula for the attenuated Radon transform—A new approach , 2004 .

[2]  E. Stein,et al.  Real Analysis: Measure Theory, Integration, and Hilbert Spaces , 2005 .

[3]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[4]  Guillaume Bal,et al.  Inverse Source Problems in Transport Equations , 2007, SIAM J. Math. Anal..

[5]  V. Sharafutdinov Integral Geometry of Tensor Fields , 1994 .

[6]  Hanming Zhou Generic injectivity and stability of inverse problems for connections , 2016, 1610.02185.

[7]  S. G. Kazantsev,et al.  Singular value decomposition for the 2D fan-beam Radon transform of tensor fields , 2004 .

[8]  F. Monard,et al.  The Geodesic X-ray Transform with a GL (n, C)-Connection , 2020 .

[9]  S. G. Kazantsev,et al.  Inversion of the scalar and vector attenuated X-ray transforms in a unit disc , 2007 .

[10]  Alexandru Tamasan,et al.  On the Range Characterization of the Two-Dimensional Attenuated Doppler Transform , 2015, SIAM J. Math. Anal..

[11]  M. Salo,et al.  Spectral rigidity and invariant distributions on Anosov surfaces , 2012, 1208.4943.

[12]  M. Salo,et al.  The attenuated ray transform for connections and Higgs fields , 2011, 1108.1118.

[13]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[14]  Gunnar Sparr,et al.  Doppler tomography for vector fields , 1995 .

[15]  Sean F. Holman,et al.  The weighted doppler transform , 2009, 0905.2375.

[16]  Alexandru Tamasan Tomographic reconstruction of vector fields in variable background media , 2007 .

[17]  G. Uhlmann,et al.  Inversion formulas and range characterizations for the attenuated geodesic ray transform , 2016, 1609.04361.

[18]  F. Monard,et al.  The Geodesic X-ray Transform with a $$GL(n,\mathbb {C})$$GL(n,C)-Connection , 2016, 1610.09571.

[19]  Kellen Petersen August Real Analysis , 2009 .

[20]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[21]  G. Uhlmann,et al.  On characterization of the range and inversion formulas for the geodesic X-ray transform , 2004 .

[22]  Frank Natterer,et al.  Inversion of the attenuated Radon transform , 2001 .

[23]  Gareth Ainsworth The Attenuated Magnetic Ray Transform on Surfaces , 2012 .

[24]  A. Einstein,et al.  Inside out , 1991, Nature.

[25]  Gunther Uhlmann,et al.  Tensor tomography on surfaces , 2011, 1109.0505.

[26]  Alexandru Tamasan,et al.  On the Range of the Attenuated Radon Transform in Strictly Convex Sets , 2013, 1310.2501.

[27]  O. Scherzer,et al.  On the $X$-ray transform of planar symmetric 2-tensors , 2015, 1503.04322.

[28]  Hanming Zhou,et al.  Invariant distributions and the geodesic ray transform , 2015, 1511.04547.

[29]  F. Monard,et al.  Efficient tensor tomography in fan-beam coordinates , 2015, 1510.05132.

[30]  Plamen Stefanov,et al.  An inverse source problem in optical molecular imaging , 2008, 0803.4034.

[31]  M. Salo,et al.  The attenuated ray transform on simple surfaces , 2010, 1004.2323.

[32]  Guillaume Bal,et al.  On the attenuated Radon transform with full and partial measurements , 2004 .

[33]  M. Salo,et al.  Invariant distributions, Beurling transforms and tensor tomography in higher dimensions , 2014, Mathematische Annalen.

[34]  R. Novikov An inversion formula for the attenuated X-ray transformation , 2002 .