Efficient tensor tomography in fan-beam coordinates. II: Attenuated transforms
暂无分享,去创建一个
[1] Jan-Olov Strömberg,et al. Novikov’s inversion formula for the attenuated Radon transform—A new approach , 2004 .
[2] E. Stein,et al. Real Analysis: Measure Theory, Integration, and Hilbert Spaces , 2005 .
[3] G. Uhlmann,et al. Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.
[4] Guillaume Bal,et al. Inverse Source Problems in Transport Equations , 2007, SIAM J. Math. Anal..
[5] V. Sharafutdinov. Integral Geometry of Tensor Fields , 1994 .
[6] Hanming Zhou. Generic injectivity and stability of inverse problems for connections , 2016, 1610.02185.
[7] S. G. Kazantsev,et al. Singular value decomposition for the 2D fan-beam Radon transform of tensor fields , 2004 .
[8] F. Monard,et al. The Geodesic X-ray Transform with a GL (n, C)-Connection , 2020 .
[9] S. G. Kazantsev,et al. Inversion of the scalar and vector attenuated X-ray transforms in a unit disc , 2007 .
[10] Alexandru Tamasan,et al. On the Range Characterization of the Two-Dimensional Attenuated Doppler Transform , 2015, SIAM J. Math. Anal..
[11] M. Salo,et al. Spectral rigidity and invariant distributions on Anosov surfaces , 2012, 1208.4943.
[12] M. Salo,et al. The attenuated ray transform for connections and Higgs fields , 2011, 1108.1118.
[13] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[14] Gunnar Sparr,et al. Doppler tomography for vector fields , 1995 .
[15] Sean F. Holman,et al. The weighted doppler transform , 2009, 0905.2375.
[16] Alexandru Tamasan. Tomographic reconstruction of vector fields in variable background media , 2007 .
[17] G. Uhlmann,et al. Inversion formulas and range characterizations for the attenuated geodesic ray transform , 2016, 1609.04361.
[18] F. Monard,et al. The Geodesic X-ray Transform with a $$GL(n,\mathbb {C})$$GL(n,C)-Connection , 2016, 1610.09571.
[19] Kellen Petersen August. Real Analysis , 2009 .
[20] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[21] G. Uhlmann,et al. On characterization of the range and inversion formulas for the geodesic X-ray transform , 2004 .
[22] Frank Natterer,et al. Inversion of the attenuated Radon transform , 2001 .
[23] Gareth Ainsworth. The Attenuated Magnetic Ray Transform on Surfaces , 2012 .
[24] A. Einstein,et al. Inside out , 1991, Nature.
[25] Gunther Uhlmann,et al. Tensor tomography on surfaces , 2011, 1109.0505.
[26] Alexandru Tamasan,et al. On the Range of the Attenuated Radon Transform in Strictly Convex Sets , 2013, 1310.2501.
[27] O. Scherzer,et al. On the $X$-ray transform of planar symmetric 2-tensors , 2015, 1503.04322.
[28] Hanming Zhou,et al. Invariant distributions and the geodesic ray transform , 2015, 1511.04547.
[29] F. Monard,et al. Efficient tensor tomography in fan-beam coordinates , 2015, 1510.05132.
[30] Plamen Stefanov,et al. An inverse source problem in optical molecular imaging , 2008, 0803.4034.
[31] M. Salo,et al. The attenuated ray transform on simple surfaces , 2010, 1004.2323.
[32] Guillaume Bal,et al. On the attenuated Radon transform with full and partial measurements , 2004 .
[33] M. Salo,et al. Invariant distributions, Beurling transforms and tensor tomography in higher dimensions , 2014, Mathematische Annalen.
[34] R. Novikov. An inversion formula for the attenuated X-ray transformation , 2002 .