RAM with Compact Memory: A Realistic and Robust Model of Computation

An operation op of arity k on ℕ, i.e. a function op: ℕk → ℕ is linear time Turing computable (for short, LTTC) if it is computable in linear time on a Turing machine (for usual binary or dyadic notation of integers). Let + and Conc respectively denote usual addition of integers and concatenation (of their dyadic notations). A RAM which uses only arithmetical operations of a set I is called an I - RAM. An LTTC-RAM is a RAM which only uses LTTC operations.

[1]  Stephen A. Cook,et al.  Time Bounded Random Access Machines , 1973, J. Comput. Syst. Sci..

[2]  Jirí Wiedermann Normalizing and Accelerating RAM Computations and the Problem of Reasonable Space Measures , 1990, ICALP.

[3]  Jan van Leeuwen,et al.  Fast Simulation of Turing Machines by Random Access Machines , 1988, SIAM J. Comput..

[4]  Claus-Peter Schnorr Satisfiability Is Quasilinear Complete in NQL , 1978, JACM.

[5]  Jirí Wiedermann Deterministic and Nondeterministic Simulation of the RAM by the Turing Machine , 1983, IFIP Congress.

[6]  Michel Minoux,et al.  LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn Formulae and Computer Implementation , 1988, Inf. Process. Lett..

[7]  Peter van Emde Boas Space Measures for Storage Modification Machines , 1989, Inf. Process. Lett..

[8]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[9]  Saharon Shelah,et al.  Nearly Linear Time , 1989, Logic at Botik.

[10]  Peter van Emde Boas,et al.  The Problem of Space Invariance for Sequential Machines , 1988, Inf. Comput..

[11]  John Michael Robson Random Access Machines with Multi-Dimensional Memories , 1990, Inf. Process. Lett..

[12]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[13]  Alfred Schmitt,et al.  On the Computational Power of the Floor Function , 1982, Inf. Process. Lett..

[14]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[15]  Etienne Grandjean,et al.  A Nontrivial Lower Bound for an NP Problem on Automata , 1990, SIAM J. Comput..

[16]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[17]  Arnold Schönhage Storage Modification Machines , 1980, SIAM J. Comput..

[18]  Arnold Schönhage A nonlinear lower bound for random-access machines under logarithmic cost , 1988, JACM.

[19]  L. E. Dickson Introduction to the theory of numbers , 1933 .

[20]  Edsger W. Dijkstra,et al.  Guarded commands, nondeterminacy and formal derivation of programs , 1975, Commun. ACM.