Passport , a native Tc 1 / mariner transposon from flatfish is functionally active in vertebrate cells

The Tc1/mariner family of DNA transposons is widesp r ad across fungal, plant and animal kingdoms, and thought to contribute to the evolutio n of their host genomes. To date, an active Tc1 transposon has not been identified within the nativ e genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish ( Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent p reference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally ctive, and given its restricted phylogenetic distr ibution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate ge nomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 eleme nts

[1]  M. Muñoz-López,et al.  Transposition of Mboumar-9: Identification of a New Naturally Active mariner-Family Transposon , 2008, Journal of molecular biology.

[2]  J. Jurka,et al.  Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes , 2008, Proceedings of the National Academy of Sciences.

[3]  B. Kong,et al.  Establishment of an immortal turkey turbinate cell line suitable for avian metapneumovirus propagation. , 2007, Virus research.

[4]  A. Shimada,et al.  The Tol1 transposable element of the medaka fish moves in human and mouse cells , 2007, Journal of Human Genetics.

[5]  B. Papp,et al.  The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends , 2007, Molecular and Cellular Biology.

[6]  A. Burzyński,et al.  Family of Tc1-like elements from fish genomes and horizontal transfer. , 2007, Gene.

[7]  Pierre-Alexandre Vidi,et al.  Plastoglobules: a new address for targeting recombinant proteins in the chloroplast , 2007, BMC biotechnology.

[8]  S. Wessler,et al.  Transposable elements and the evolution of eukaryotic genomes , 2006, Proceedings of the National Academy of Sciences.

[9]  Alexander Emelyanov,et al.  Trans-Kingdom Transposition of the Maize Dissociation Element , 2006, Genetics.

[10]  B. Fletcher,et al.  Hyperactive transposase mutants of the Sleeping Beauty transposon. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[11]  S. Afanasyev,et al.  Transcribed Tc1-like transposons in salmonid fish , 2005, BMC Genomics.

[12]  Min Han,et al.  Efficient Transposition of the piggyBac (PB) Transposon in Mammalian Cells and Mice , 2005, Cell.

[13]  A. Mazabraud,et al.  Characterization of multiple lineages of Tc1-like elements within the genome of the amphibian Xenopus tropicalis. , 2005, Gene.

[14]  D. Largaespada,et al.  Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. , 2005, Blood.

[15]  Shawn M. Burgess,et al.  High-Resolution Genome-Wide Mapping of Transposon Integration in Mammals , 2005, Molecular and Cellular Biology.

[16]  Yong Huang,et al.  Mutational Analysis of the N-Terminal DNA-Binding Domain of Sleeping Beauty Transposase: Critical Residues for DNA Binding and Hyperactivity in Mammalian Cells , 2004, Molecular and Cellular Biology.

[17]  Feng Chen,et al.  A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac , 2004, Nature Genetics.

[18]  Z. Izsvák,et al.  Development of hyperactive sleeping beauty transposon vectors by mutational analysis. , 2004, Molecular therapy : the journal of the American Society of Gene Therapy.

[19]  D. Witherspoon,et al.  A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia. , 2004, Genetics.

[20]  R. Plasterk,et al.  The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. , 2003, Nucleic acids research.

[21]  D. Largaespada,et al.  Gene transfer into genomes of human cells by the sleeping beauty transposon system. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[22]  Z. Izsvák,et al.  The DNA-bending protein HMGB1 is a cellular cofactor of Sleeping Beauty transposition. , 2003, Nucleic acids research.

[23]  P. Hackett,et al.  Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. , 2002, Journal of molecular biology.

[24]  C. Higgins,et al.  Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor1α promoter , 2001, Gene Therapy.

[25]  M. Leaver A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. , 2001, Gene.

[26]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[27]  D. Vassilatis,et al.  Genome‐wide insertional mutagenesis in human cells by the Drosophila mobile element Minos , 2000, EMBO reports.

[28]  R. Plasterk,et al.  Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. , 2000, Journal of molecular biology.

[29]  R. Plasterk,et al.  Resident aliens: the Tc1/mariner superfamily of transposable elements. , 1999, Trends in genetics : TIG.

[30]  Suzuki,et al.  An active Ac-like transposable element in teleost fish. , 1998, Journal of marine biotechnology.

[31]  S. Hughes,et al.  The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. , 1998, Virology.

[32]  R. Plasterk,et al.  Molecular Reconstruction of Sleeping Beauty , a Tc1-like Transposon from Fish, and Its Transposition in Human Cells , 1997, Cell.

[33]  D. Hartl,et al.  What restricts the activity of mariner-like transposable elements. , 1997, Trends in genetics : TIG.

[34]  M J Leaver,et al.  Structure and expression of a cluster of glutathione S-transferase genes from a marine fish, the plaice (Pleuronectes platessa). , 1997, The Biochemical journal.

[35]  C. Bauser,et al.  Precise excision of TTAA‐specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera , 1996, Insect molecular biology.

[36]  A. Bradley,et al.  Recycling selectable markers in mouse embryonic stem cells , 1996, Molecular and cellular biology.

[37]  Z. Izsvák,et al.  Characterization of a Tc1-like transposable element in zebrafish (Danio rerio) , 1995, Molecular and General Genetics MGG.

[38]  H. Robertson The Tcl-mariner superfamily of transposons in animals , 1995 .

[39]  Hugh M. Robertson,et al.  The mariner transposable element is widespread in insects , 1993, Nature.

[40]  H. Niwa,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector. , 1991, Gene.

[41]  G. Franz,et al.  Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. , 1991, Nucleic acids research.

[42]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[43]  D. Hartl,et al.  Molecular structure of a somatically unstable transposable element in Drosophila. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Moerman,et al.  Spontaneous unstable unc-22 IV mutations in C. elegans var. Bergerac. , 1984, Genetics.

[45]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[46]  B. Mcclintock The origin and behavior of mutable loci in maize , 1950, Proceedings of the National Academy of Sciences.

[47]  Alfred L George,et al.  PiggyBac transposon-mediated gene transfer in human cells. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[48]  G. Barlow,et al.  Fishes of the world , 2004, Environmental Biology of Fishes.

[49]  L. Girard,et al.  Regulatory changes as a consequence of transposon insertion. , 1999, Developmental genetics.

[50]  David Garrick,et al.  Repeat-induced gene silencing in mammals , 1998, Nature Genetics.

[51]  P. Anderson,et al.  The Tc3 family of transposable genetic elements in Caenorhabditis elegans. , 1989, Genetics.

[52]  M. Kay,et al.  Helper-independent Sleeping Beauty Transposon–transposase Vectors for Efficient Nonviral Gene Delivery and Persistent Gene Expression in Vivo , 2022 .