Smooth functions and local extreme values

The problem of specifying a smooth and simple function that approximates noisy data is considered. A new automatic method is described that is based on solving a constrained optimisation problem. The target functional to be minimised is the sum of the squared residuals penalised by the curve length of the approximation. Multiresolution and monotonicity constraints provide a good approximation to the data with a small number of local extreme values. The new method can also be applied to density estimation.

[1]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[2]  Otmar Scherzer,et al.  Bivariate density estimation using BV regularisation , 2007, Comput. Stat. Data Anal..

[3]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[4]  T. Gasser,et al.  Locally Adaptive Bandwidth Choice for Kernel Regression Estimators , 1993 .

[5]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[6]  Jianqing Fan,et al.  Regularization of Wavelet Approximations , 2001 .

[7]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[8]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[9]  T. Gasser,et al.  Fast Algorithms for Nonparametric Curve Estimation , 1994 .

[10]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[11]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[12]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[13]  S. Geer Least Squares Estimation , 2005 .

[14]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[15]  D. Cox Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[16]  P. Davies,et al.  Local Extremes, Runs, Strings and Multiresolution , 2001 .

[17]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[18]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[19]  G. Winkler,et al.  Smoothers for Discontinuous Signals , 2002 .

[20]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[21]  E. Nadaraya On Estimating Regression , 1964 .

[22]  P. Davies,et al.  Densities, spectral densities and modality , 2004, math/0410071.

[23]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .