How the Hawking radiation affect quantum Fisher information of Dirac particles in the background of a Schwarzschild black hole

In this work, the effect of Hawking radiation on the quantum Fisher information (QFI) of Dirac particles is investigated in the background of a Schwarzschild black hole. Interestingly, it has been verified that the QFI with respect to the weight parameter $$\theta $$θ of a target state is always independent of the Hawking temperature T. This implies that if we encode the information on the weight parameter, then we can affirm that the corresponding accuracy of the parameter estimation will be immune to the Hawking effect. Besides, it reveals that the QFI with respect to the phase parameter $$\phi $$ϕ exhibits a decay behavior with the increase in the Hawking temperature T and converges to a nonzero value in the limit of infinite Hawking temperature T. Remarkably, it turns out that the function $$F_\phi $$Fϕ on $$\theta =\pi \big /4$$θ=π/4 symmetry was broken by the influence of the Hawking radiation. Finally, we generalize the case of a three-qubit system to a case of a N-qubit system, i.e., $$|\psi \rangle _{1,2,3,\ldots ,N} =(\cos \theta | 0 \rangle ^{\otimes N}+\sin \theta \mathrm{e}^{i\phi }| 1 \rangle ^{\otimes N})$$|ψ⟩1,2,3,…,N=(cosθ|0⟩⊗N+sinθeiϕ|1⟩⊗N) and obtain an interesting result: the number of particles in the initial state does not affect the QFI $$F_\theta $$Fθ, nor the QFI $$F_\phi $$Fϕ. However, with the increasing number of particles located near the event horizon, $$F_\phi $$Fϕ will be affected by Hawking radiation to a large extent, while $$F_\theta $$Fθ is still free from disturbance resulting from the Hawking effects.

[1]  Jia-Dong Shi,et al.  How the Hawking effect affects multipartite entanglement of Dirac particles in the background of a Schwarzschild black hole , 2014 .

[2]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  R. Srikanth,et al.  The Unruh effect interpreted as a quantum noise channel , 2014, Quantum Inf. Comput..

[4]  Jieci Wang,et al.  Classical correlation and quantum discord sharing of Dirac fields in noninertial frames , 2009, 0912.4129.

[5]  Jiliang Jing,et al.  Late-time behavior of massive Dirac fields in a Schwarzschild background , 2004, gr-qc/0405122.

[6]  Liu Ye,et al.  Probing the quantum correlation and Bell non-locality for Dirac particles with Hawking effect in the background of Schwarzschild black hole , 2014 .

[7]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[8]  Dieter R. Brill,et al.  Interaction of neutrinos and gravitational fields , 1957 .

[9]  Animesh Datta Quantum discord between relatively accelerated observers , 2009 .

[10]  B. Frieden,et al.  Lagrangians of physics and the game of Fisher-information transfer. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  G. R. Jin,et al.  Quantum Fisher information of entangled coherent states in the presence of photon loss , 2013, 1307.7353.

[12]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[13]  Jing Liu,et al.  Phase-matching condition for enhancement of phase sensitivity in quantum metrology , 2013, 1308.4799.

[14]  C. Helstrom Quantum detection and estimation theory , 1969 .

[15]  T. Isola,et al.  Uncertainty principle and quantum Fisher information. II. , 2007 .

[16]  Salman Khan,et al.  Entanglement of tripartite states with decoherence in non-inertial frames , 2012, 1302.3005.

[17]  T. Isola,et al.  Uncertainty principle and quantum Fisher information , 2005, math-ph/0509046.

[18]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[19]  Jiliang Jing,et al.  Hawking radiation, entanglement, and teleportation in the background of an asymptotically flat static black hole , 2008, 0809.0811.

[20]  Jieci Wang,et al.  Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime , 2009, 0905.3430.

[21]  Liu Ye,et al.  Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space-time , 2015 .

[22]  Nan Li,et al.  Entanglement detection via quantum Fisher information , 2013 .

[23]  Jieci Wang,et al.  How the Hawking effect and prepared states affect entanglement distillability of Dirac fields , 2011 .

[24]  Heng Fan,et al.  Quantum discord and measurement-induced disturbance in the background of dilaton black holes , 2014 .

[25]  Xiaoguang Wang,et al.  Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels , 2011 .

[26]  M. Khalid Khan,et al.  Entanglement of Open Quantum Systems in Noninertial Frames , 2012, Open Syst. Inf. Dyn..

[27]  Franco Nori,et al.  Fisher information under decoherence in Bloch representation , 2012, 1212.0917.

[28]  M. K. Khan,et al.  Open quantum systems in noninertial frames , 2010, 1010.5395.

[29]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[30]  S. Luo Wigner-Yanase skew information and uncertainty relations. , 2003, Physical review letters.

[31]  Shunlong Luo,et al.  Quantum Fisher Information and Uncertainty Relations , 2000 .

[32]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[33]  Yan Hong,et al.  Quantum non-Markovianity based on the Fisher-information matrix , 2015 .

[34]  Xing Xiao,et al.  Quantum Fisher information in noninertial frames , 2014, 1401.0596.

[35]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[36]  Takahiro Sagawa,et al.  Uncertainty relation revisited from quantum estimation theory , 2010, 1010.3571.

[37]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[38]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[39]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.