Temperature Effects on the Photovoltaic Performance of Planar Structure Perovskite Solar Cells
暂无分享,去创建一个
Juan Bisquert | Hiroshi Segawa | Takaya Kubo | Satoshi Uchida | Jotaro Nakazaki | Ludmila Cojocaru | J. Bisquert | S. Uchida | T. Kubo | H. Segawa | J. Nakazaki | Y. Sanehira | Yoshitaka Sanehira | L. Cojocaru | Victoria González-Pedro | Victoria González‐Pedro
[1] Nakita K. Noel,et al. Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.
[2] Aron Walsh,et al. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles , 2014, 1405.6290.
[3] F. Fabregat‐Santiago,et al. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.
[4] S. Raga,et al. Analysis of the Origin of Open Circuit Voltage in Dye Solar Cells. , 2012, The journal of physical chemistry letters.
[5] Garry Rumbles,et al. Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.
[6] Michael D. McGehee,et al. Perovskite solar cells: Continuing to soar. , 2014, Nature materials.
[7] Tsutomu Miyasaka,et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.
[8] Trystan Watson,et al. Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells , 2015 .
[9] Juan Bisquert,et al. Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.
[10] H. Mashiyama,et al. Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3 , 2002 .
[11] Martin Schreyer,et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .
[12] Peter N. Gorley,et al. Photovoltaic solar cells performance at elevated temperatures , 2005 .
[13] T. Miyasaka. Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices , 2015 .
[14] Thomas Pfadler,et al. Erroneous efficiency reports harm organic solar cell research , 2014, Nature Photonics.
[15] J. Teuscher,et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.
[16] Christoph J. Brabec,et al. Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions , 2001 .
[17] Hao Li,et al. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. , 2012, Journal of the American Chemical Society.
[18] Dongmei Li,et al. Interfaces in perovskite solar cells. , 2015, Small.
[19] Determination of Chloride Content in Planar CH3NH3PbI3−xClx Solar Cells by Chemical Analysis , 2015 .
[20] S. Uchida,et al. Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells , 2015 .
[21] M. Grätzel. The light and shade of perovskite solar cells. , 2014, Nature materials.
[22] Tsutomu Miyasaka,et al. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.
[23] M. Grätzel,et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.
[24] Henry J. Snaith,et al. Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.
[25] E. Matsubara. X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems , 2011 .
[26] W. Warta,et al. Solar cell efficiency tables (Version 45) , 2015 .
[27] A. Mashreghi. Determining the volume thermal expansion coefficient of TiO2 nanoparticle by molecular dynamics simulation , 2012 .
[28] T. Hansen,et al. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.
[29] B. Morosin,et al. Pressure and Temperature Dependences of the Raman-Active Phonons in Sn O 2 , 1973 .
[30] Shenghao Wang,et al. Temperature-dependent hysteresis effects in perovskite-based solar cells , 2015 .
[31] Tsutomu Miyasaka,et al. Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.