Temperature Effects on the Photovoltaic Performance of Planar Structure Perovskite Solar Cells

The present work has been supported by New Energy and Industrial Technology Development Organization (NEDO, Japan) and Japan Society for the Promotion of Science (JSPS) for Overseas Researchers. The authors acknowledge Ajay Kumar Jena for his help.

[1]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[2]  Aron Walsh,et al.  Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles , 2014, 1405.6290.

[3]  F. Fabregat‐Santiago,et al.  Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[4]  S. Raga,et al.  Analysis of the Origin of Open Circuit Voltage in Dye Solar Cells. , 2012, The journal of physical chemistry letters.

[5]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[6]  Michael D. McGehee,et al.  Perovskite solar cells: Continuing to soar. , 2014, Nature materials.

[7]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[8]  Trystan Watson,et al.  Observable Hysteresis at Low Temperature in “Hysteresis Free” Organic–Inorganic Lead Halide Perovskite Solar Cells , 2015 .

[9]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[10]  H. Mashiyama,et al.  Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3 , 2002 .

[11]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[12]  Peter N. Gorley,et al.  Photovoltaic solar cells performance at elevated temperatures , 2005 .

[13]  T. Miyasaka Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices , 2015 .

[14]  Thomas Pfadler,et al.  Erroneous efficiency reports harm organic solar cell research , 2014, Nature Photonics.

[15]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[16]  Christoph J. Brabec,et al.  Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions , 2001 .

[17]  Hao Li,et al.  CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. , 2012, Journal of the American Chemical Society.

[18]  Dongmei Li,et al.  Interfaces in perovskite solar cells. , 2015, Small.

[19]  Determination of Chloride Content in Planar CH3NH3PbI3−xClx Solar Cells by Chemical Analysis , 2015 .

[20]  S. Uchida,et al.  Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells , 2015 .

[21]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[22]  Tsutomu Miyasaka,et al.  The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[23]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[24]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[25]  E. Matsubara X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems , 2011 .

[26]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[27]  A. Mashreghi Determining the volume thermal expansion coefficient of TiO2 nanoparticle by molecular dynamics simulation , 2012 .

[28]  T. Hansen,et al.  Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. , 2015, Chemical communications.

[29]  B. Morosin,et al.  Pressure and Temperature Dependences of the Raman-Active Phonons in Sn O 2 , 1973 .

[30]  Shenghao Wang,et al.  Temperature-dependent hysteresis effects in perovskite-based solar cells , 2015 .

[31]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.