Efficient high-order singular quadrature schemes in magnetic fusion

Several problems in magnetically confined fusion, such as the computation of exterior vacuum fields or the decomposition of the total magnetic field into separate contributions from the plasma and the external sources, are best formulated in terms of integral equation expressions. Based on Biot-Savart-like formulae, these integrals contain singular integrands. The regularization method commonly used to address the computation of various singular surface integrals along general toroidal surfaces is low-order accurate, and therefore requires a dense computational mesh in order to obtain sufficient accuracy. In this work, we present a fast, high-order quadrature scheme for the efficient computation of these integrals. Several numerical examples are provided demonstrating the computational efficiency and the high-order accurate convergence. A corresponding code for use in the community has been publicly released.

[1]  Vladimir Rokhlin,et al.  On the solution of elliptic partial differential equations on regions with corners , 2016, J. Comput. Phys..

[2]  V. Pustovitov Decoupling in the problem of tokamak plasma response to asymmetric magnetic perturbations , 2008 .

[3]  Camille Carvalho,et al.  Close evaluation of layer potentials in three dimensions , 2018, J. Comput. Phys..

[4]  J. Hanson The virtual-casing principle and Helmholtz’s theorem , 2015 .

[5]  L. Zakharov,et al.  Determination of the vacuum field resulting from the perturbation of a toroidally symmetric plasma , 1999 .

[6]  Andreas Klöckner,et al.  A fast algorithm for Quadrature by Expansion in three dimensions , 2018, J. Comput. Phys..

[7]  James Bremer,et al.  On the numerical evaluation of the singular integrals of scattering theory , 2013, J. Comput. Phys..

[8]  D. Zorin,et al.  Ubiquitous evaluation of layer potentials using Quadrature by Kernel-Independent Expansion , 2016, 1612.00977.

[9]  Anders Karlsson,et al.  An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces , 2013, J. Comput. Phys..

[10]  J. Freidberg,et al.  Stability of a high‐β, l=3 stellarator , 1976 .

[11]  K. Lackner,et al.  Computation of ideal MHD equilibria , 1976 .

[12]  Y. Turkin,et al.  Optimisation of stellarator equilibria with ROSE , 2018, Nuclear Fusion.

[13]  P. Merkel A Green’s Function Method for the Vacuum Contribution to the MHD Stability of Helically Symmetric Equilibria , 1982 .

[14]  Kirill Serkh,et al.  On the solution of elliptic partial differential equations on regions with corners II: Detailed analysis , 2017, Applied and Computational Harmonic Analysis.

[15]  Johan Helsing A Fast and Stable Solver for Singular Integral Equations on Piecewise Smooth Curves , 2011, SIAM J. Sci. Comput..

[16]  P. Merkel,et al.  Solution of stellarator boundary value problems with external currents , 1987 .

[17]  Lexing Ying,et al.  A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains , 2006, J. Comput. Phys..

[18]  Vitalii D. Shafranov,et al.  Use of the virtual-casing principle in calculating the containing magnetic field in toroidal plasma systems , 1972 .

[19]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[20]  W. Schneider,et al.  Erato Stability Code , 1984 .

[21]  Oscar P. Bruno,et al.  Surface scattering in three dimensions: an accelerated high–order solver , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Ludvig af Klinteberg,et al.  Fast Ewald summation for Stokesian particle suspensions , 2014 .

[23]  R. Albanese,et al.  Integral formulation for 3D eddy-current computation using edge elements , 1988 .

[24]  Michael O'Neil,et al.  An integral equation-based numerical solver for Taylor states in toroidal geometries , 2016, J. Comput. Phys..

[25]  Johan Helsing,et al.  Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning , 2008, J. Comput. Phys..

[26]  Donald Monticello,et al.  PIES Free Boundary Stellarator Equilibria with Improved Initial Conditions , 2005 .

[27]  P. Merkel,et al.  Three-dimensional free boundary calculations using a spectral Green's function method , 1986 .

[28]  V. D. Pustovitov,et al.  Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems , 2000 .

[29]  Michael Siegel,et al.  A local target specific quadrature by expansion method for evaluation of layer potentials in 3D , 2017, J. Comput. Phys..

[30]  James Bremer,et al.  A Nyström method for weakly singular integral operators on surfaces , 2012, J. Comput. Phys..

[31]  Michael O'Neil,et al.  Fast algorithms for Quadrature by Expansion I: Globally valid expansions , 2016, J. Comput. Phys..

[32]  M. S. Chance,et al.  Vacuum calculations in azimuthally symmetric geometry , 1997 .

[33]  J. Freidberg,et al.  Magnetohydrodynamic stability of a sharp boundary model of tokamak , 1975 .

[34]  Leslie Greengard,et al.  An integral equation formulation for rigid bodies in Stokes flow in three dimensions , 2016, J. Comput. Phys..

[35]  Dhairya Malhotra,et al.  Taylor states in stellarators: A fast high-order boundary integral solver , 2019, J. Comput. Phys..

[36]  P. Merkel,et al.  Hera and other extensions of Erato , 1981 .

[37]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[38]  Leslie Greengard,et al.  Quadrature by expansion: A new method for the evaluation of layer potentials , 2012, J. Comput. Phys..

[39]  A. I. Morozov,et al.  Motion of Charged Particles in Electromagnetic Fields , 1966 .

[40]  M. S. Chance,et al.  Calculation of the vacuum Green's function valid even for high toroidal mode numbers in tokamaks , 2007, J. Comput. Phys..

[41]  P. Merkel,et al.  An integral equation technique for the exterior and interior Neumann problem in toroidal regions , 1986 .

[42]  E. Strumberger,et al.  Finite-β magnetic field line tracing for Helias configurations , 1997 .

[43]  Hong Zhao,et al.  A spectral boundary integral method for flowing blood cells , 2010, J. Comput. Phys..

[44]  Johan Helsing,et al.  On the polarizability and capacitance of the cube , 2012, 1203.5997.

[45]  Tokamak elongation: how much is too much? II Numerical results , 2015, 1508.06664.

[46]  Vladimir Rokhlin,et al.  On the Numerical Solution of Elliptic Partial Differential Equations on Polygonal Domains , 2019, SIAM J. Sci. Comput..

[47]  Camille Carvalho,et al.  Asymptotic Approximations for the Close Evaluation of Double-Layer Potentials , 2018, SIAM J. Sci. Comput..

[48]  Svetlana Tlupova,et al.  Nearly Singular Integrals in 3D Stokes Flow , 2013 .

[49]  V. Pustovitov General formulation of the resistive wall mode coupling equations , 2008 .

[50]  S. Lazerson The virtual-casing principle for 3D toroidal systems , 2012 .

[51]  H. Lütjens,et al.  Free-boundary simulations with the XTOR-2F code , 2017 .

[52]  Matt Landreman,et al.  An improved current potential method for fast computation of stellarator coil shapes , 2016, 1609.04378.