New formalism for the analysis of passively Q-switched laser systems

We present a new formalism for the analysis of passively Q-switched laser systems that facilitates the performance of sensitivity studies and system optimizations. The developed formalism is general enough to include the impact of an ESA process in the saturable absorber Q-switch and, therefore, is applicable to Cr/sup 4+/:YAG passively Q-switched systems. To illustrate the use of the developed formalism, we have applied it to a comparative analysis of two laser systems based on Nd:YAG and Yb:YAG.

[1]  J. Zayhowski,et al.  Optimization of Q-switched lasers , 1991 .

[2]  T. Fan,et al.  Diode-pumped Q-switched Yb:YAG laser. , 1993, Optics letters.

[3]  A. Gavrielides,et al.  Pulse train characterisitcs of a passively Q-switched microchip laser. , 1999 .

[4]  Michael Bass,et al.  A generalized model for passively Q-switched lasers including excited state absorption in the saturable absorber , 1997 .

[5]  Lloyd L. Chase,et al.  Ground-state depleted solid-state lasers: principles, characteristics and scaling , 1990 .

[6]  Back-reflection pumping versus contradirectional pumping in upconversion solid state lasers , 1998 .

[7]  Michael Bass,et al.  Z-scan measurement of the ground and excited state absorption cross sections of Cr/sup 4+/ in yttrium aluminum garnet , 1999 .

[8]  W. P. Risk,et al.  Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses , 1988 .

[9]  Stephen A. Payne,et al.  Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .

[10]  R J Beach,et al.  183-W, M(2) = 2.4 Yb:YAG Q-switched laser. , 1999, Optics letters.

[11]  J. J. Degnan,et al.  Optimization of passively Q-switched lasers , 1995 .

[12]  J. J. Zayhowski Microchip lasers , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[13]  John J. Zayhowski,et al.  Mid- and High-Power Passively Q-Switched Microchip Lasers , 2001 .

[14]  Shou-Huan Zhou,et al.  Single-frequency Q-switched Cr,Nd:YAG laser operating at 946-nm wavelength , 1997 .

[15]  Antoniangelo Agnesi,et al.  Diode-pumped neodymium lasers repetitively Q-switched by Cr/sup 4+/:YAG solid-state saturable absorbers , 1997 .

[16]  R. Beach CW Theory of quasi-three level end-pumped laser oscillators , 1996 .

[17]  K. K. Lee,et al.  Self-stabilized single-longitudinal-mode operation in a self-Q-switched Cr,Nd:YAG laser. , 1993, Optics letters.

[18]  Anthony E. Siegman,et al.  New developments in laser resonators , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[19]  Rüdiger Paschotta,et al.  Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers , 2001 .

[20]  L. Frantz,et al.  Theory of Pulse Propagation in a Laser Amplifier , 1963 .

[21]  Raymond J. Beach,et al.  Optimization of quasi-three level end-pumped Q-switched lasers , 1995 .

[22]  K. K. Lee,et al.  Self-Q-switched diode-end-pumped Cr,Nd:YAG laser with polarized output. , 1993, Optics letters.

[23]  K. K. Lee,et al.  Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser , 1995 .

[24]  A. Baranga,et al.  Cr4+ doped garnets: novel laser materials and non-linear saturable absorbers , 1997 .

[25]  S. Rotman,et al.  Some optical properties of Cr4+-doped crystals , 1999 .

[26]  Yehoshua Kalisky,et al.  Excited-state absorption studies of Cr/sup 4+/ ions in several garnet host crystals , 1998 .

[27]  Tso Yee Fan,et al.  Optimizing the efficiency and stored energy in quasi-three-level lasers , 1992 .

[28]  E. Mix,et al.  Passively Q-switched Yb:YAG microchip laser using a semiconductor saturable absorber mirror , 2001 .

[29]  K. K. Lee,et al.  Monolithic self-Q-switched Cr,Nd:YAG laser. , 1993, Optics letters.

[30]  T. Fan,et al.  Aperture guiding in quasi-three-level lasers. , 1994, Optics letters.

[31]  J. J. Degnan,et al.  Theory of the optimally coupled Q-switched laser , 1989 .