A System of Dynamic Modal Logic

In many logics dealing with information one needs to make statements not only about cognitive states, but also about transitions between them. In this paper we analyze a dynamic modal logic that has been designed with this purpose in mind. On top of an abstract information ordering on states it has instructions to move forward or backward along this ordering, to states where a certain assertion holds or fails, while it also allows combinations of such instructions by means of operations from relation algebra. In addition, the logic has devices for expressing whether in a given state a certain instruction can be carried out, and whether that state can be arrived at by carrying out a certain instruction.

[1]  Hirofumi Katsuno,et al.  On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.

[2]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[3]  Vaughan R. Pratt,et al.  Action Logic and Pure Induction , 1990, JELIA.

[4]  Vaughan R. Pratt,et al.  Dynamic algebras as a well-behaved fragment of relation algebras , 1988, Algebraic Logic and Universal Algebra in Computer Science.

[5]  Dov M. Gabbay,et al.  An Axiomitization of the Temporal Logic with Until and Since over the Real Numbers , 1990, J. Log. Comput..

[6]  Ej Emil Krahmer,et al.  A programme of modal unification of dynamic theories , 1996 .

[7]  André Fuhrmann,et al.  The Logic of Theory Change , 1991, Lecture Notes in Computer Science.

[8]  David Harel,et al.  Recurring Dominoes: Making the Highly Undecidable Highly Understandable (Preliminary Report) , 1983, FCT.

[9]  Frank Veltman,et al.  Defaults in update semantics , 1996, J. Philos. Log..

[10]  Maarten de Rijke Meeting some neighbours , 1992 .

[11]  J. P. Thorne Language in Action , 1968, Nature.

[12]  Dexter Kozen,et al.  On the Duality of Dynamic Algebras and Kripke Models , 1979, Logic of Programs.

[13]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[14]  Ryszard Danecki,et al.  Nondeterministic Propositional Dynamic Logic with intersection is decidable , 1984, Symposium on Computation Theory.

[15]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[16]  D. Harel Recurring dominoes: making the highly undecidable highly understandable , 1985 .

[17]  Johan van Benthem Logic and the flow of information , 1995 .

[18]  Maarten de Rijke Modal model theory , 1995 .

[19]  Jan van Eijck,et al.  Reasoning about update logic , 1993, J. Philos. Log..

[20]  Jeroen Groenendijk,et al.  Dynamic predicate logic , 1991 .

[21]  Maarten de Rijke The logic of Peirce algebras , 1995, J. Log. Lang. Inf..

[22]  Emiel Krahmer,et al.  A Programme of Modal Uniication of Dynamic Theories 0 , 1995 .

[23]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[24]  J.F.A.K. van Benthem,et al.  Modal Logic as a Theory of Information , 1996 .

[25]  maarten marx Algebraic Relativization and Arrow Logic , 1995 .

[26]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[27]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[28]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[29]  Dov M. Gabbay,et al.  Adding a temporal dimension to a logic system , 1992, J. Log. Lang. Inf..

[30]  J. Jaspers Calculi for Constructive Communication , 1994 .

[31]  George Gargov,et al.  A Note on Boolean Modal Logic , 1990 .

[32]  André Fuhrmann,et al.  On the modal logic of theory change , 1989, The Logic of Theory Change.

[33]  M. de Rijke,et al.  The Modal Logic of Inequality , 1992, J. Symb. Log..

[34]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[35]  Saharon Shelah,et al.  The Decision Problem for Branching Time Logic , 1985, J. Symb. Log..

[36]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[37]  Johan van Benthem,et al.  Language in action , 1991, J. Philos. Log..

[38]  W. Salmon,et al.  Knowledge in Flux , 1991 .

[39]  Yde Venema,et al.  Derivation rules as anti-axioms in modal logic , 1993, Journal of Symbolic Logic.

[40]  Tinko Tinchev,et al.  An Essay in Combinatory Dynamic Logic , 1991, Inf. Comput..