Electrochemical transistors with ionic liquids for enzymatic sensing.

We report an enzymatic sensor based on an organic electrochemical transistor that uses a room temperature ionic liquid as an integral part of its structure and as an immobilization medium for the enzyme and the mediator.

[1]  Arthur W. Herriott,et al.  Phase transfer catalysis. Evaluation of catalysis , 1975 .

[2]  G. Wallace,et al.  Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes , 2003 .

[3]  Robin D. Rogers,et al.  Ionic liquids : industrial applications for green chemistry , 2002 .

[4]  Zhen Yang Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. , 2009, Journal of biotechnology.

[5]  Gunnar Jeschke,et al.  Heterogeneity of the Surfactant Layer in Organically Modified Silicates and Polymer/Layered Silicate Composites , 2006 .

[6]  Robin D. Rogers,et al.  The third evolution of ionic liquids: active pharmaceutical ingredients , 2007 .

[7]  N. Lee,et al.  Organic electrochemical transistor based immunosensor for prostate specific antigen (PSA) detection using gold nanoparticles for signal amplification. , 2010, Biosensors & bioelectronics.

[8]  J. F. Knifton,et al.  Ethylene glycol from synthesis gas via ruthenium melt catalysis , 1981 .

[9]  Varinder K Aggarwal,et al.  Unexpected side reactions of imidazolium-based ionic liquids in the base-catalysed Baylis-Hillman reaction. , 2002, Chemical communications.

[10]  P. Walden Molecular weights and electrical conductivity of several fused salts , 1914 .

[11]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[12]  Jason A C Clyburne,et al.  Electrochemical reduction of an imidazolium cation: a convenient preparation of imidazol-2-ylidenes and their observation in an ionic liquid. , 2004, Chemical communications.

[13]  Fenghua Li,et al.  Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing. , 2008, Biosensors & bioelectronics.

[14]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[15]  Anilesh Kumar,et al.  Conductimetric immunosensor based on poly(3,4-ethylenedioxythiophene). , 2002, Chemical communications.

[16]  M. Maroncelli,et al.  Solvation Dynamics and Rotation of Coumarin 153 in Alkylphosphonium Ionic Liquids , 2004 .

[17]  G. W. Parshall,et al.  Reactivity of trialkylphosphine complexes of platinum(O) , 1971 .

[18]  S. Dong,et al.  Electrochemical Characteristics of Glucose Oxidase Adsorbed at Carbon Nanotubes Modified Electrode with Ionic Liquid as Binder , 2007 .

[19]  K. M. Alexander,et al.  Uses of Quaternary Phosphonium Compounds in Phase Transfer Catalysis , 2000 .

[20]  Raquel Verdejo,et al.  Effect of montmorillonite intercalant structure on the cure parameters of natural rubber , 2008 .

[21]  M. Berggren,et al.  Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. , 2009, Nature materials.

[22]  M. Berggren,et al.  Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. , 2007, Nature materials.

[23]  George G. Malliaras,et al.  Organic Electronics at the Interface with Biology , 2010 .

[24]  K. R. Seddon,et al.  DielsAlder reactions in ionic liquids , 1999 .

[25]  Changcheng Zhu,et al.  A simple poly(3,4-ethylene dioxythiophene)/poly(styrene sulfonic acid) transistor for glucose sensing at neutral pH. , 2004, Chemical communications.

[26]  George G. Malliaras,et al.  Enzymatic sensing with organic electrochemical transistors , 2008 .

[27]  Guodong Yuan,et al.  Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants , 2007 .

[28]  Robin D. Rogers,et al.  Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate , 2003 .

[29]  Charles Angell Origin and Control of Low-Melting Behavior in Salts, Polysalts, Salt Solvates, and Glassformers , 2002 .

[30]  George G. Malliaras,et al.  Organic semiconductors in sensor applications , 2008 .

[31]  Jianji Wang,et al.  L-Proline in an ionic liquid as an efficient and reusable catalyst for direct asymmetric α-aminoxylation of aldehydes and ketones , 2006 .

[32]  Hiroyuki Ohno,et al.  Improved ionic conductivity of nitrile rubber/ionic liquid composites , 2005 .

[33]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[34]  Hiroyuki Ohno,et al.  Solubility and stability of cytochrome c in hydrated ionic liquids: effect of oxo acid residues and kosmotropicity. , 2007, Biomacromolecules.

[35]  S. Zakeeruddin,et al.  Novel room temperature ionic liquids of hexaalkyl substituted guanidinium salts for dye-sensitized solar cells , 2004 .

[36]  Gianni Podda,et al.  Nonhydrated anion transfer from the aqueous to the organic phase: enhancement of nucleophilic reactivity in phase-transfer catalysis , 1982 .

[37]  J. Clyburne,et al.  Phosphonium ionic liquids as reaction media for strong bases. , 2005, Chemical communications.

[38]  D. Beebe,et al.  Surface-directed liquid flow inside microchannels. , 2001, Science.

[39]  Dario Landini,et al.  Stability of quaternary onium salts under phase-transfer conditions in the presence of aqueous alkaline solutions , 1986 .

[40]  Rajiv Prakash,et al.  Copper(II) ion-selective microelectrochemical transistor , 2001, Applied biochemistry and biotechnology.

[41]  Toshiyuki Itoh,et al.  A rational design of phosphonium salt type ionic liquids for ionic liquid coated-lipase catalyzed reaction , 2010 .

[42]  George G. Malliaras,et al.  Microfluidic gating of an organic electrochemical transistor , 2005 .

[43]  Ravi S Kane,et al.  Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[44]  Jianbin Zheng,et al.  Direct electrochemistry of glucose oxidase based on its direct immobilization on carbon ionic liquid electrode and glucose sensing , 2008 .

[45]  Masahiro Yoshizawa,et al.  Room temperature ionic liquids from 20 natural amino acids. , 2005, Journal of the American Chemical Society.

[46]  Roger A. Sheldon,et al.  Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity , 2004 .

[47]  K. Tsunashima,et al.  Physical and Electrochemical Properties of Room Temperature Ionic Liquids Based on Quaternary Phosphonium Cations , 2007 .

[48]  Robin D. Rogers,et al.  Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients , 2007 .

[49]  Ram S. Mohan,et al.  Reactivity of ionic liquids , 2007 .

[50]  R. G. Evans,et al.  Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Douglas R. MacFarlane,et al.  Phosphonium-Based Ionic Liquids: An Overview , 2009 .

[52]  David Nilsson,et al.  An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper , 2002 .

[53]  Hua Zhao,et al.  Effect of kosmotropicity of ionic liquids on the enzyme stability in aqueous solutions. , 2006, Bioorganic chemistry.

[54]  Robert Byrne,et al.  Electrochemical transistors with ionic liquids for enzymatic sensing , 2011, Organic Photonics + Electronics.

[55]  Douglas R. MacFarlane,et al.  Phosphonium-Based Ionic Liquids: An Overview , 2009 .

[56]  Feng Yan,et al.  Ion-sensitive properties of organic electrochemical transistors. , 2010, ACS applied materials & interfaces.

[57]  J. Goldman,et al.  Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications , 1999 .

[58]  James McNulty,et al.  Phosphonium Salts as Room‐Temperature Ionic Liquids in Organic Synthesis , 2006 .

[59]  J. F. Knifton,et al.  Vicinal glycol esters from synthesis gas , 1981 .

[60]  R. A. Sheldon,et al.  Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization (a review) , 2005 .

[61]  Wei Xie,et al.  Thermal Stability of Quaternary Phosphonium Modified Montmorillonites , 2002 .

[62]  Takayuki Shoji,et al.  Heterocyclic compounds such as pyrroles, pyridines, pyrollidins, piperdines, indoles, imidazol and pyrazins , 2001 .

[63]  G. W. Parshall,et al.  Lewis acid adducts of trans-hydrocyanobis(triethylphosphine)platinum , 1976 .

[64]  Edwin Jager,et al.  Translating Electronic Currents to Precise Acetylcholine–Induced Neuronal Signaling Using an Organic Electrophoretic Delivery Device , 2009 .

[65]  Filip Stefaniak,et al.  Phosphonium acesulfamate based ionic liquids , 2005 .

[66]  Tony McNally,et al.  Ionic Liquid Modification of Layered Silicates for Enhanced Thermal Stability , 2007 .

[67]  James McNulty,et al.  Suzuki cross-coupling reactions of aryl halides in phosphonium salt ionic liquid under mild conditions. , 2002, Chemical communications.

[68]  R. Kazlauskas,et al.  Biocatalysis in ionic liquids - advantages beyond green technology. , 2003, Current opinion in biotechnology.

[69]  Peng Wang,et al.  High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. , 2002, Chemical communications.

[70]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[71]  V. Koch,et al.  Nonaqueous electrolytes for electrochemical capacitors: Imidazolium cations and inorganic fluorides with organic carbonates , 1997 .

[72]  Hui Zhang,et al.  Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. , 2009, The journal of physical chemistry. B.

[73]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[74]  Nahid Amini,et al.  Structural studies of ambient temperature plastic crystal ion conductors , 2001 .

[75]  Luigi Cassar,et al.  Phase-Transfer Catalysis , 1977 .

[76]  Edward Plichta,et al.  Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. , 2005, The journal of physical chemistry. B.

[77]  Hak-sung Kim,et al.  Electrochemical characterization of polypyrrole/glucose oxidase biosensor: Part II. Optimal preparation conditions for the biosensor , 1996 .

[78]  P. Bartlett,et al.  Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)–poly(styrenesulfonate) composite films , 1996 .

[79]  D. Macfarlane,et al.  Protein solubilising and stabilising ionic liquids. , 2005, Chemical communications.

[80]  G. Wallace,et al.  Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers , 2003 .

[81]  J. Kimmig,et al.  Invertseifen als Antimykotika; Zusammenhänge zwischen Konstitution und Wirkung , 1950 .

[82]  V. Koch,et al.  Differential Capacitance Measurements in Solvent‐Free Ionic Liquids at Hg and C Interfaces , 1997 .

[83]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[84]  P. R. Danesi,et al.  SELECTIVITY-STRUCTURE TRENDS IN THE EXTRACTION OF Co(II) AND Ni(II) BY DIALKYL PHOSPHORIC, ALKYL ALKYLPHOSPHONIC,AND DIALKYLPHOSPHINIC ACIDS∗ , 1985 .

[85]  P. Bartlett,et al.  A microelectrochemical switch responsive to NADH , 1996 .

[86]  J. Ross Ullman's encyclopedia of industrial chemistry , 1986 .

[87]  P. Bartlett,et al.  An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film. , 1998, Analytical chemistry.

[88]  Henry S. White,et al.  Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor , 1984 .

[89]  Fei Zhao,et al.  Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid. , 2008, Analytical biochemistry.

[90]  Hua Zhao,et al.  Methods for stabilizing and activating enzymes in ionic liquids--a review , 2010 .

[91]  T. Spychaj,et al.  Ionic liquids as convenient latent hardeners of epoxy resins , 2003 .

[92]  A. Daugulis,et al.  Phosphonium ionic liquids for degradation of phenol in a two-phase partitioning bioreactor , 2005, Applied Microbiology and Biotechnology.

[93]  M. Yamaguchi,et al.  Noninvasively measuring blood glucose using saliva. , 1998, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[94]  Rajiv Prakash,et al.  Copper(II) ion-selective microelectrochemical transistor , 2000 .

[95]  Shadpour Mallakpour,et al.  Ionic Liquids as Green Solvents: Progress and Prospects , 2012 .

[96]  G. W. Parshall,et al.  Phosphine Complexes of Rhenium , 2007 .

[97]  George G. Malliaras,et al.  All-Plastic Electrochemical Transistor for Glucose Sensing Using a Ferrocene Mediator , 2009, Sensors.

[98]  Maria Forsyth,et al.  Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics , 2001 .

[99]  C. Angell,et al.  Protic Ionic Liquids: Preparation, Characterization, and Proton Free Energy Level Representation † , 2007 .

[100]  Wen Lu,et al.  Electrochemical Actuator Devices Based on Polyaniline Yarns and Ionic Liquid Electrolytes , 2005 .

[101]  P. Bartlett,et al.  A Microelectrochemical Enzyme Transistor Responsive to Glucose , 1994 .

[102]  Anthony J. Arduengo,et al.  Looking for Stable Carbenes: The Difficulty in Starting Anew , 1999 .

[103]  George G. Malliaras,et al.  Influence of Device Geometry on Sensor Characteristics of Planar Organic Electrochemical Transistors , 2010, Advanced materials.

[104]  George G. Malliaras,et al.  Gating of an organic transistor through a bilayer lipid membrane with ion channels , 2006 .

[105]  Zhen Yang,et al.  Ionic liquids: Green solvents for nonaqueous biocatalysis , 2005 .

[106]  K. Seddon,et al.  Ionic liquids: designer solvents for green synthesis , 2002 .

[107]  J. F. Knifton,et al.  Homogeneous Transition-Metal Catalysis in Molten Salts , 1988 .

[108]  Kun Qiao,et al.  Novel acidic ionic liquids catalytic systems for Friedel-Crafts alkylation of aromatic compounds with alkenes , 2004 .

[109]  R. Vaia,et al.  Structure and dynamics of surfactant interfaces in organically modified clays. , 2008, The journal of physical chemistry. B.

[110]  James McNulty,et al.  Heck reactions of aryl halides in phosphonium salt ionic liquids: library screening and applications , 2004 .

[111]  Paul A. Kohl,et al.  Properties of asymmetric benzyl-substituted ammonium ionic liquids and their electrochemical properties , 2005 .

[112]  G. Blomgren,et al.  Ionic Liquids for Lithium Ion and Related Batteries , 2002 .

[113]  Andrew Streitwieser,et al.  Basicity of a stable carbene, 1,3-di-tert-butylimidazol-2-ylidene, in THF. , 2002, Journal of the American Chemical Society.

[114]  A. Stark,et al.  1-Ethyl-3-methylimidazolium halogenoaluminate ionic liquids as solvents for Friedel–Crafts acylation reactions of ferrocene , 1999 .

[115]  Musa R. Kamal,et al.  Polystyrene/Phosphonium Organoclay Nanocomposites by Melt Compounding , 2008 .

[116]  G. W. Parshall,et al.  Synthesis and properties of cobalt(I) compounds. I. Triethyl phosphite complexes , 1974 .

[117]  Roger A Sheldon,et al.  Immobilised enzymes: carrier-bound or carrier-free? , 2003, Current opinion in biotechnology.

[118]  G. Wallace,et al.  Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices , 2002, Science.

[119]  Hoon Sik Kim,et al.  Ionic Liquids as Electrolytes for Li Ion Batteries , 2004 .

[120]  G. W. Parshall,et al.  Dimethylphosphinothioic Chloride and Dimethylphosphinous Chloride: (Chlorodimethylphosphine) , 2007 .

[121]  Dae-Won Park,et al.  Copolymerization of phenyl glycidyl ether with carbon dioxide catalyzed by ionic liquids , 2005 .

[122]  Grzegorz Lota,et al.  Room-temperature phosphonium ionic liquids for supercapacitor application , 2005 .

[123]  George G Malliaras,et al.  Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. , 2009, Lab on a chip.