Low-Temperature Materials and Thin Film Transistors for Flexible Electronics

This paper addresses the low-temperature deposition processes and electronic properties of silicon based thin film semiconductors and dielectrics to enable the fabrication of mechanically flexible electronic devices on plastic substrates. Device quality amorphous hydrogenated silicon (a-Si:H), nanocrystalline silicon (nc-Si), and amorphous silicon nitride (a-SiN/sub x/) films and thin film transistors (TFTs) were made using existing industrial plasma deposition equipment at the process temperatures as low as 75/spl deg/C and 120/spl deg/C. The a-Si:H TFTs fabricated at 120/spl deg/C demonstrate performance similar to their high-temperature counterparts, including the field effect mobility (/spl mu//sub FE/) of 0.8 cm/sup 2/V/sup -1/s/sup -1/, the threshold voltage (V/sub T/) of 4.5 V, and the subthreshold slope of 0.5 V/dec, and can be used in active matrix (AM) displays including organic light emitting diode (OLED) displays. The a-Si:H TFTs fabricated at 75/spl deg/C exhibit /spl mu//sub FE/ of 0.6 cm/sup 2/V/sup -1/s/sup -1/, and V/sub T/ of 4 V. It is shown that further improvement in TFT performance can be achieved by using n/sup +/ nc-Si contact layers and plasma treatments of the interface between the gate dielectric and the channel layer. The results demonstrate that with appropriate process optimization, the large area thin film Si technology suits well the fabrication of electronic devices on low-cost plastic substrates.

[1]  J. Perrin,et al.  4 – Reactor Design for a-Si: H Deposition , 1995 .

[2]  Andreas Habeck,et al.  Ultra Thin Flexible Glass Substrates , 2003 .

[3]  Miltiadis K. Hatalis,et al.  High-performance poly-silicon circuits on thin metal foils , 2003, IS&T/SPIE Electronic Imaging.

[4]  Paul F. Baude,et al.  High Performance Organic Thin Film Transistors , 2003 .

[5]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[6]  James R. Sheats,et al.  Roll-to-roll manufacturing of thin film electronics , 2002, SPIE Advanced Lithography.

[7]  M. Weaver,et al.  Thin-film permeation-barrier technology for flexible organic light-emitting devices , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Andrei Sazonov,et al.  Optimization of 75°C amorphous silicon nitride for TFTs on plastics , 2003 .

[9]  Hiroshi Sakai,et al.  Production technology for amorphous silicon-based flexible solar cells , 2001 .

[10]  John Robertson,et al.  Deposition mechanism of hydrogenated amorphous silicon , 2000 .

[11]  B. Streetman Solid state electronic devices , 1972 .

[12]  Arokia Nathan,et al.  Amorphous silicon nitride deposited at 120 °C for organic light emitting display-thin film transistor arrays on plastic substrates , 2002 .

[13]  Y. U. Lee,et al.  3.4: Invited Paper: Developments of Transmissive a‐Si TFT‐LCD using Low Temperature Processes on Plastic Substrate , 2004 .

[14]  Sigurd Wagner,et al.  Hydrogen in Ultralow Temperature SiO 2 for Nanocrystalline Silicon Thin Film Transistors , 2004 .

[15]  Sanjiv Sambandan,et al.  A-Si Amoled Display Backplanes on Flexible Substrates , 2004 .

[16]  Arokia Nathan,et al.  120 °C fabrication technology for a-Si:H thin film transistors on flexible polyimide substrates , 2000 .

[17]  Kimberly J. Allen Reel to Real: Prospects for Flexible Displays , 2005, Proceedings of the IEEE.

[18]  Arokia Nathan,et al.  Amorphous silicon nitride deposited at 120°C for OLED-TFT arrays on plastic substrates , 2002 .

[19]  Savvas G. Chamberlain,et al.  Fabrication of a-Si:H Tfts at 120°C on Flexible Polyimide Substrates , 1999 .

[20]  Andrei Sazonov,et al.  Low Temperature PECVD Silicon Oxide For Devices And Circuits On Flexible Substrates , 2003 .

[21]  A. Sazonov,et al.  Sub-100 °C a-Si:H thin-film transistors on plastic substrates with silicon nitride gate dielectrics , 2004 .

[22]  Mukul Agrawal,et al.  Device Physics , 2002 .

[23]  S. Inoue,et al.  Surface free technology by laser annealing (SUFTLA) , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[24]  Arokia Nathan,et al.  Low temperature (75 o C) hydrogenated nanocrystalline silicon films grown by conventional plasma enhanced chemical vapor deposition for thin film transistors , 2004 .

[25]  Arokia Nathan,et al.  Materials optimization for thin film transistors fabricated at low temperature on plastic substrate , 2000 .

[26]  Andrei Sazonov,et al.  Top Gate Tft for Large Area Electronics , 2004 .

[27]  Yue Kuo,et al.  Deposition of Dielectric Thin Films for a-Si:H TFT , 2004 .

[28]  Sigurd Wagner,et al.  Silicon for thin-film transistors , 2003 .

[29]  Joseph K. McDermott,et al.  Thin-Film Solid-State Lithium Battery for Body Worn Electronics , 2002 .

[30]  Kazuaki Kitamura,et al.  Effect of plasma treatment on the density of defects at an amorphous Si:H-insulator interface , 1998 .

[31]  Peyman Servati,et al.  Device Physics, Compact Modeling, and Circuit Applications of a-Si:H TFTs , 2004 .

[32]  John Robertson,et al.  High Quality Growth of SiO 2 at 80° C by Electron Cyclotron Resonance (ECR) for Thin Film Transistors , 2001 .