Postprocessing the Galerkin Method: The Finite-Element Case

A postprocessing technique, developed earlier for spectral methods, is extended here to Galerkin finite-element methods for dissipative evolution partial differential equations. The postprocessing amounts to solving a linear elliptic problem on a finer grid (or higher-order space) once the time integration on the coarser mesh is completed. This technique increases the convergence rate of the finite-element method to which it is applied, and this is done at almost no additional computational cost. The numerical experiments presented here show that the resulting postprocessed method is computationally more efficient than the method to which it is applied (say, quadratic finite elements) as well as standard methods of similar order of convergence as the postprocessed one (say, cubic finite elements). The error analysis of the new method is performed in L2 and in $L^\infty$ norms.

[1]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[2]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[3]  R. Téman,et al.  Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations , 1988 .

[4]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[5]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[6]  Javier de Frutos,et al.  A Spectral Element Method for the Navier-Stokes Equations with Improved Accuracy , 2000, SIAM J. Numer. Anal..

[7]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[8]  R. Temam,et al.  Attractors for the Navier-Stokes equations: Iocalization and approximation , 1989 .

[9]  Edriss S. Titi,et al.  On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .

[10]  C. Palencia,et al.  Maximum Norm Analysis of Completely Discrete Finite Element Methods for Parabolic Problems , 1996 .

[11]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[12]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[13]  Edriss S. Titi,et al.  Postprocessing the Galerkin Method: a Novel Approach to Approximate Inertial Manifolds , 1998 .

[14]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[15]  Bosco García-Archilla Some Practical Experience with the Time Integration of Dissipative Equations , 1995 .

[16]  David M. Sloan,et al.  Numerical Solution of a Nonlinear Dissipative System Using a Pseudospectral Method and Inertial Manifolds , 1995, SIAM J. Sci. Comput..

[17]  A. H. Schatz,et al.  On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .

[18]  Andrew R. Mitchell,et al.  Finite Element Analysis and Applications , 1985 .

[19]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[20]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[21]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[22]  M. Marion,et al.  On the construction of families of approximate inertial manifolds , 1992 .

[23]  Javier de Frutos,et al.  A postprocess based improvement of the spectral element method , 2000 .

[24]  George R. Sell,et al.  Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .

[25]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[26]  I. Kevrekidis,et al.  Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations , 1990 .

[27]  Jean-Claude Saut,et al.  Asymptotic integration of Navier–Stokes equations with potential forces. II. An explicit Poincaré–Dulac normal form , 1990 .

[28]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[29]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[30]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[31]  Javier de Frutos,et al.  A postprocessed Galerkin method with Chebyshev or Legendre polynomials , 2000, Numerische Mathematik.

[32]  Mary F. Wheeler,et al.  L∞-boundedness of the finite element galerkin operator for parabolic problems , 1982 .

[33]  M. Marion,et al.  A class of numerical algorithms for large time integration: the nonlinear Galerkin methods , 1992 .