k-commuting mappings of generalized matrix algebras

In this paper we will study k-commuting mappings of generalized matrix algebras. The general form of arbitrary k-commuting mapping of a generalized matrix algebra is determined. It is shown that under mild assumptions, every k-commuting mapping of a generalized matrix algebra takes a certain form which is said to be proper. A number of applications related to k-commuting mappings are presented. These results extend the existing works of Cheung (J Lond Math Soc 63:117–127, 2001), Du and Wang (Linear Algebra Appl 436:1367–1375 2012) to the case of generalized matrix algebras.

[1]  R. Khazal,et al.  Isomorphism of generalized triangular matrix-rings and recovery of tiles , 2003 .

[2]  Wallace S. Martindale,et al.  On Functional Identities in Prime Rings with Involution , 1998 .

[4]  F. Wei,et al.  Jordan Derivations and Antiderivations of Generalized Matrix Algebras , 2012, 1202.2527.

[5]  S. Dascalescu,et al.  Isomorphisms between Morita context rings , 2011, 1106.6192.

[6]  I. Herstein Lie and Jordan structures in simple associative rings , 1961 .

[7]  Nicoletta Del Buono,et al.  A Dynamical System Approach for Continuous Nonnegative Matrix Factorization , 2017 .

[8]  ADDITIVITY OF MAPS ON GENERALIZED MATRIX ALGEBRAS , 2011 .

[9]  A. Tuganbaev,et al.  Modules over formal matrix rings , 2010 .

[10]  M. Brešar Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings , 1993 .

[11]  COMMUTING MAPS: A SURVEY , 2004 .

[12]  Y. Fong,et al.  Applying functional identities to some linear preserver problems , 2002 .

[13]  W. Franca Commuting traces of multilinear maps on invertible elements , 2018 .

[14]  P. Krylov Isomorphism of generalized matrix rings , 2008 .

[15]  D. Eremita Functional identities of degree 2 in triangular rings revisited , 2015 .

[16]  J. Repka,et al.  R A ] 1 3 D ec 2 01 3 σ-BIDERIVATIONS AND σ-COMMUTING MAPS OF TRIANGULAR ALGEBRAS , 2013 .

[17]  K. Beidar,et al.  Functional identities on upper triangular matrix algebras , 2000 .

[18]  Charles Lanski An Engel condition with derivation for left ideals , 1997 .

[19]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[20]  Yu Wang,et al.  k-Commuting maps on triangular algebras , 2012 .

[21]  M. Brešar On a generalization of the notion of centralizing mappings , 1992 .

[22]  F. Wei,et al.  Centralizing traces and Lie triple isomorphisms on generalized matrix algebras , 2014, 1411.6122.

[23]  A. Mikhalev,et al.  Functional identities in rings and their applications , 2004 .

[24]  Cheng–Kai Liu Centralizing maps on invertible or singular matrices over division rings , 2014 .

[25]  Kiiti Morita,et al.  Duality for modules and its applications to the theory of rings with minimum condition , 1958 .

[26]  W. Cheung Commuting Maps of Triangular Algebras , 2001 .

[27]  F. Wei,et al.  Semi-centralizing maps of generalized matrix algebras☆ , 2012 .

[28]  Multiplicative Lie n-derivations of generalized matrix algebras , 2013 .

[29]  P. N. Ánh,et al.  Automorphism groups of generalized triangular matrix rings , 2011 .

[30]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[31]  F. Wei,et al.  Centralizing traces with automorphisms on triangular algebras , 2018 .

[32]  M. Marianne Rings of quotients of generalized matrix rings , 1987 .

[33]  P. Šemrl,et al.  Commuting Traces of Biadditive Maps Revisited , 2003 .

[34]  F. Wei,et al.  Commuting mappings of generalized matrix algebras , 2010 .

[35]  Dominik Benkovič Biderivations of triangular algebras , 2009 .

[36]  F. Wei,et al.  Centralizing traces and Lie triple isomorphisms on triangular algebras , 2013, 1301.2043.

[37]  Changchang Xi,et al.  A characteristic free approach to Brauer algebras , 2000 .

[38]  F. Wei,et al.  Commuting Traces and Lie Isomorphisms on Generalized Matrix Algebras , 2012, 1210.3488.

[39]  M. Brešar On Generalized Biderivations and Related Maps , 1995 .

[40]  W. Franca Commuting Traces of Biadditive Maps on Invertible Elements , 2016 .

[41]  G. Birkenmeier,et al.  Idempotents and structures of rings , 2015, 1507.06290.

[42]  Dominik Benkovič,et al.  Commuting traces and commutativity preserving maps on triangular algebras , 2004 .

[43]  T. Wong,et al.  On additive maps of prime rings satisfying the engel condition , 1997 .

[44]  D. Bump Compact Operators , 2011 .

[45]  Matej Brešar,et al.  Centralizing Mappings and Derivations in Prime Rings , 1993 .

[46]  Jianhua Zhang,et al.  Generalized biderivations of nest algebras , 2006 .

[47]  D. Eremita Functional identities of degree 2 in triangular rings , 2013 .

[48]  Juana S'anchez-Ortega $\sigma$-Mappings of triangular algebras , 2013, 1312.4635.

[49]  K. Beidar On functional identities and commuting additive mappings , 1998 .

[50]  L. Wyk,et al.  Isomorphisms between strongly triangular matrix rings , 2012, 1210.4675.

[51]  Yu Wang,et al.  Lie derivations of generalized matrix algebras , 2012 .

[52]  Jordan derivations of unital algebras with idempotents , 2012 .