Humane Non-Human Primate Model of Traumatic Spinal Cord Injury Utilizing Electromyography as a Measure of Impairment and Recovery

The overall goal of this project is to develop a humane non-human primate model of traumatic spinal cord injury that will facilitate the development and evaluation of therapeutic interventions. The model utilizes neurophysiological techniques to identify the location of the upper motor neuron axons that innervate the lower motor neurons that control tail musculature. This facilitates the placement of a selective lesion that partially disconnects the upper and lower motor neuron supply to the musculature of the tail. An implanted transmitter quantitatively measures electromyography data from the tail. The preliminary data indicates that this model is feasible. The subject was able to tolerate the implantation of the transmitter, without adverse effects. As well, there was no limb impairment, bowel dysfunction or bladder dysfunction. The histopathologic and electromyographic features of the selective experimental lesion were similar to human spinal cord injury.

[1]  G. Castañeda-Hernández,et al.  Mechanisms involved in the cardiovascular alterations immediately after spinal cord injury. , 2001, Life sciences.

[2]  H. Moriya,et al.  Upregulation of osteopontin expression in rat spinal cord microglia after traumatic injury. , 2003, Journal of neurotrauma.

[3]  Shanker Nesathurai,et al.  The Rehabilitation of People with Spinal Cord Injury , 2000 .

[4]  S. Nesathurai,et al.  Normative nerve conductions in the tail of rhesus macaques (Macaca mulatta) , 2006, Journal of medical primatology.

[5]  E. Eidelberg,et al.  Locomotor control in macaque monkeys. , 1981, Brain : a journal of neurology.

[6]  Shanker Nesathurai,et al.  Model of traumatic spinal cord injury in Macaca fascicularis: similarity of experimental lesions created by epidural catheter to human spinal cord injury , 2006, Journal of medical primatology.

[7]  M. Fehlings,et al.  Current status of clinical trials for acute spinal cord injury. , 2005, Injury.

[8]  F. Clarac,et al.  Reversible Disorganization of the Locomotor Pattern after Neonatal Spinal Cord Transection in the Rat , 2003, The Journal of Neuroscience.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  L. Deecke,et al.  Neurophysiological assessment of afferent and efferent conduction in the injured spinal cord of monkeys. , 1973, Journal of neurosurgery.

[11]  A. Graham,et al.  Acute traumatic spinal cord injury induces glial activation in the cynomolgus macaque (Macaca fascicularis) , 2012, Journal of medical primatology.

[12]  Thierry Wannier,et al.  Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? , 2007, Nature Medicine.

[13]  T. Anderson Spinal cord contusion injury: experimental dissociation of hemorrhagic necrosis and subacute loss of axonal conduction. , 1985, Journal of neurosurgery.

[14]  S. Finkelstein,et al.  Models of spinal cord injury: Part 3. Dynamic load technique. , 1988, Neurosurgery.

[15]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .

[16]  M. Schwab,et al.  Sequential loss of myelin proteins during Wallerian degeneration in the rat spinal cord , 2003, Glia.

[17]  Yoram Cohen,et al.  q-Space high b value diffusion MRI of hemi-crush in rat spinal cord: evidence for spontaneous regeneration. , 2002, Magnetic resonance imaging.

[18]  State of the flexor reflex in paraplegic dog and monkey respectively , 1932, The Journal of physiology.

[19]  S. Finkelstein,et al.  Models of spinal cord injury: Part 1. Static load technique. , 1986, Neurosurgery.

[20]  M. Tuszynski,et al.  Spontaneous and augmented growth of axons in the primate spinal cord: Effects of local injury and nerve growth factor‐secreting cell grafts , 2002, The Journal of comparative neurology.

[21]  P.R. OJHA,et al.  TAIL CARRIAGE AND DOMINANCE IN THE RHESUS MONKEY, MACACA MULATTA , 1974 .

[22]  E. Eidelberg,et al.  Stepping by chronic spinal cats , 2004, Experimental Brain Research.

[23]  M. Oliviera,et al.  Peripheral nerve grafts promoting central nervous system regeneration after spinal cord injury in the primate. , 2002, Journal of neurosurgery.

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.