The Steep-Bounce zeta map in Parabolic Cataland

As a classical object, the Tamari lattice has many generalizations, including $\nu$-Tamari lattices and parabolic Tamari lattices. In this article, we unify these generalizations in a bijective fashion. We first prove that parabolic Tamari lattices are isomorphic to $\nu$-Tamari lattices for bounce paths $\nu$. We then introduce a new combinatorial object called `left-aligned colorable tree', and show that it provides a bijective bridge between various parabolic Catalan objects and certain nested pairs of Dyck paths. As a consequence, we prove the Steep-Bounce Conjecture using a generalization of the famous zeta map in $q,t$-Catalan combinatorics. A generalization of the zeta map on parking functions, which arises in the theory of diagonal harmonics, is also obtained as a labeled version of our bijection.

[1]  Dov Tamari,et al.  Monoïdes préordonnés et chaînes de Malcev , 1954 .

[2]  J. B. Remmel,et al.  A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.

[3]  Adriano M. Garsia,et al.  A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..

[5]  Vincent Pilaud,et al.  Hopf dreams and diagonal harmonics , 2018, Journal of the London Mathematical Society.

[6]  Cesar Ceballos,et al.  Combinatorics of the zeta map on rational Dyck paths , 2016, J. Comb. Theory, Ser. A.

[7]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[8]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[9]  Francois Bergeron,et al.  Multivariate diagonal coinvariant spaces for complex reflection groups , 2011, 1105.4358.

[10]  H. Thomas,et al.  Rowmotion in slow motion , 2017, Proceedings of the London Mathematical Society.

[11]  Hugh Thomas An Analogue of Distributivity for Ungraded Lattices , 2006, Order.

[12]  Nicholas A. Loehr,et al.  A conjectured combinatorial formula for the Hilbert series for diagonal harmonics , 2005, Discret. Math..

[13]  Marko Thiel,et al.  From Anderson to zeta , 2015, Adv. Appl. Math..

[14]  Arnau Padrol,et al.  The ν-Tamari Lattice via ν-Trees, ν-Bracket Vectors, and Subword Complexes , 2020, Electron. J. Comb..

[15]  Wenjie Fang,et al.  The enumeration of generalized Tamari intervals , 2015, Eur. J. Comb..

[16]  H. Thomas,et al.  Cataland: Why the Fuß? , 2019 .

[17]  Emeric Deutsch,et al.  Dyck paths : generalities and terminology , 2003 .

[18]  Jean Marcel Pallo,et al.  Associahedra, Tamari Lattices and Related Structures , 2012 .

[19]  Nathan Williams,et al.  Tamari Lattices for Parabolic Quotients of the Symmetric Group , 2019, Electron. J. Comb..

[20]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[21]  F. Bergeron,et al.  Higher Trivariate Diagonal Harmonics via generalized Tamari Posets , 2011, 1105.3738.

[22]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[23]  George Markowsky,et al.  Primes, irreducibles and extremal lattices , 1992 .

[25]  Marni Mishna,et al.  Two non-holonomic lattice walks in the quarter plane , 2009, Theor. Comput. Sci..

[26]  Nathan Williams,et al.  Sweeping up zeta , 2015 .

[27]  Erik Carlsson,et al.  A proof of the shuffle conjecture , 2015, 1508.06239.

[28]  Gregory S. Warrington,et al.  Sweep maps: A continuous family of sorting algorithms , 2014 .

[29]  ad-nilpotent $\frak b$-ideals in sl(n) having a fixed class of nilpotence: combinatorics and enumeration , 2000, math/0004107.

[30]  Arnau Padrol,et al.  THE ν-TAMARI LATTICE AS THE ROTATION LATTICE OF ν-TREES , 2018 .

[31]  James Haglund Conjectured statistics for the q,t-Catalan numbers , 2003 .

[32]  Winfried Geyer On Tamari lattices , 1994, Discret. Math..

[33]  James Haglund,et al.  The q, t-Catalan numbers and the space of diagonal harmonics : with an appendix on the combinatorics of Macdonald polynomials , 2007 .

[34]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[35]  Arnau Padrol,et al.  The $\nu$-Tamari lattice as the rotation lattice of $\nu$-trees , 2018, 1805.03566.

[36]  -nilpotent -ideals in () having a fixed class of nilpotence: combinatorics and enumeration , 2002 .

[37]  A. Garsia,et al.  A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .

[38]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .

[39]  Alan Day,et al.  Characterizations of Finite Lattices that are Bounded-Homomqrphic Images or Sublattices of Free Lattices , 1979, Canadian Journal of Mathematics.