The Steep-Bounce zeta map in Parabolic Cataland
暂无分享,去创建一个
[1] Dov Tamari,et al. Monoïdes préordonnés et chaînes de Malcev , 1954 .
[2] J. B. Remmel,et al. A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.
[3] Adriano M. Garsia,et al. A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..
[5] Vincent Pilaud,et al. Hopf dreams and diagonal harmonics , 2018, Journal of the London Mathematical Society.
[6] Cesar Ceballos,et al. Combinatorics of the zeta map on rational Dyck paths , 2016, J. Comb. Theory, Ser. A.
[7] Mark Haiman,et al. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.
[8] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[9] Francois Bergeron,et al. Multivariate diagonal coinvariant spaces for complex reflection groups , 2011, 1105.4358.
[10] H. Thomas,et al. Rowmotion in slow motion , 2017, Proceedings of the London Mathematical Society.
[11] Hugh Thomas. An Analogue of Distributivity for Ungraded Lattices , 2006, Order.
[12] Nicholas A. Loehr,et al. A conjectured combinatorial formula for the Hilbert series for diagonal harmonics , 2005, Discret. Math..
[13] Marko Thiel,et al. From Anderson to zeta , 2015, Adv. Appl. Math..
[14] Arnau Padrol,et al. The ν-Tamari Lattice via ν-Trees, ν-Bracket Vectors, and Subword Complexes , 2020, Electron. J. Comb..
[15] Wenjie Fang,et al. The enumeration of generalized Tamari intervals , 2015, Eur. J. Comb..
[16] H. Thomas,et al. Cataland: Why the Fuß? , 2019 .
[17] Emeric Deutsch,et al. Dyck paths : generalities and terminology , 2003 .
[18] Jean Marcel Pallo,et al. Associahedra, Tamari Lattices and Related Structures , 2012 .
[19] Nathan Williams,et al. Tamari Lattices for Parabolic Quotients of the Symmetric Group , 2019, Electron. J. Comb..
[20] Michelle L. Wachs,et al. Shellable nonpure complexes and posets. II , 1996 .
[21] F. Bergeron,et al. Higher Trivariate Diagonal Harmonics via generalized Tamari Posets , 2011, 1105.3738.
[22] Donald E. Knuth,et al. The art of computer programming: V.1.: Fundamental algorithms , 1997 .
[23] George Markowsky,et al. Primes, irreducibles and extremal lattices , 1992 .
[25] Marni Mishna,et al. Two non-holonomic lattice walks in the quarter plane , 2009, Theor. Comput. Sci..
[26] Nathan Williams,et al. Sweeping up zeta , 2015 .
[27] Erik Carlsson,et al. A proof of the shuffle conjecture , 2015, 1508.06239.
[28] Gregory S. Warrington,et al. Sweep maps: A continuous family of sorting algorithms , 2014 .
[29] ad-nilpotent $\frak b$-ideals in sl(n) having a fixed class of nilpotence: combinatorics and enumeration , 2000, math/0004107.
[30] Arnau Padrol,et al. THE ν-TAMARI LATTICE AS THE ROTATION LATTICE OF ν-TREES , 2018 .
[31] James Haglund. Conjectured statistics for the q,t-Catalan numbers , 2003 .
[32] Winfried Geyer. On Tamari lattices , 1994, Discret. Math..
[33] James Haglund,et al. The q, t-Catalan numbers and the space of diagonal harmonics : with an appendix on the combinatorics of Macdonald polynomials , 2007 .
[34] Germain Kreweras,et al. Sur les partitions non croisees d'un cycle , 1972, Discret. Math..
[35] Arnau Padrol,et al. The $\nu$-Tamari lattice as the rotation lattice of $\nu$-trees , 2018, 1805.03566.
[36] -nilpotent -ideals in () having a fixed class of nilpotence: combinatorics and enumeration , 2002 .
[37] A. Garsia,et al. A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .
[38] M. Wachs. SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .
[39] Alan Day,et al. Characterizations of Finite Lattices that are Bounded-Homomqrphic Images or Sublattices of Free Lattices , 1979, Canadian Journal of Mathematics.