A Family of Current References Based on 2T Voltage References: Demonstration in 0.18-μm With 0.1-nA PTAT and 1.1-μA CWT 38-ppm/°C Designs

The robustness of current and voltage references to process, voltage and temperature (PVT) variations is paramount to the operation of integrated circuits in real-world conditions. However, while recent voltage references can meet most of these requirements with a handful of transistors, current references remain rather complex, requiring significant design time and silicon area. In this paper, we present a family of simple current references consisting of a two-transistor (2T) ultra-low-power voltage reference, buffered onto a voltage-to-current converter by a single transistor. Two topologies are fabricated in a 0.18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> partially-depleted silicon-on-insulator (SOI) technology and measured over 10 dies. First, a 7T nA-range proportional-to-absolute-temperature (PTAT) reference intended for constant-<inline-formula> <tex-math notation="LaTeX">$g_{m}$ </tex-math></inline-formula> biasing of subthreshold operational amplifiers demonstrates a 0.096-nA current with a line sensitivity (LS) of 1.48 %/V, a temperature coefficient (TC) of 0.75 %/°C, and a variability <inline-formula> <tex-math notation="LaTeX">$(\sigma /\mu)$ </tex-math></inline-formula> of 1.66 %. Then, two 4T+1R <inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula>-range constant-with-temperature (CWT) references with (resp. without) TC calibration exhibit a 1.09-<inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula> (resp. 0.99-<inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula>) current with a 0.21-%/V (resp. 0.20-%/V) LS, a 38-ppm/°C (resp. 290-ppm/°C) TC, and a 0.87-% (resp. 0.65-%) <inline-formula> <tex-math notation="LaTeX">$(\sigma /\mu)$ </tex-math></inline-formula>. In addition, portability to common scaled CMOS technologies, such as 65-nm bulk and 28-nm fully-depleted SOI, is discussed and validated through post-layout simulations.

[1]  Massimo Alioto,et al.  A 0.6-to-1.8V CMOS Current Reference With Near-100% Power Utilization , 2021, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Massimo Alioto,et al.  Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW , 2021, IEEE Journal of Solid-State Circuits.

[3]  Chenchang Zhan,et al.  A −40 °C to 120 °C, 169 ppm/°C Nano-Ampere CMOS Current Reference , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  He Tang,et al.  A 8.2-pW 2.4-pA Current Reference Operating at 0.5 V With No Amplifiers or Resistors , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Shimeng Yu,et al.  High-Throughput In-Memory Computing for Binary Deep Neural Networks With Monolithically Integrated RRAM and 90-nm CMOS , 2019, IEEE Transactions on Electron Devices.

[6]  Chenchang Zhan,et al.  A 0.7-V 28-nW CMOS Subthreshold Voltage and Current Reference in One Simple Circuit , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[7]  Hirofumi Shinohara,et al.  A CMOS 0.85-V 15.8-nW Current and Voltage Reference without Resistors , 2019, 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).

[8]  Steffen Paul,et al.  Compact Extended Industrial Range CMOS Current References , 2019, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Hui Wang,et al.  A 3.4-pW 0.4-V 469.3 ppm/°C Five-Transistor Current Reference Generator , 2018, IEEE Solid-State Circuits Letters.

[10]  Sergio Bampi,et al.  A 0.12–0.4 V, Versatile 3-Transistor CMOS Voltage Reference for Ultra-Low Power Systems , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Giuseppe Iannaccone,et al.  A portable class of 3‐transistor current references with low‐power sub‐0.5 V operation , 2018, Int. J. Circuit Theory Appl..

[12]  Andreia Cathelin,et al.  Fully Depleted Silicon on Insulator Devices CMOS: The 28-nm Node Is the Perfect Technology for Analog, RF, mmW, and Mixed-Signal System-on-Chip Integration , 2017, IEEE Solid-State Circuits Magazine.

[13]  David Blaauw,et al.  A 1.02nW PMOS-only, trim-free current reference with 282ppm/°C from −40°C to 120°C and 1.6% within-wafer inaccuracy , 2017, ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference.

[14]  Sergio Bampi,et al.  A sub-1 V, nanopower, ZTC based zero-VT temperature-compensated current reference , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[15]  Amir M. Sodagar,et al.  A low-power temperature-compensated CMOS peaking current reference in subthreshold region , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[16]  Dong Wang,et al.  A 65-nm CMOS Constant Current Source With Reduced PVT Variation , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[17]  Zhuo Wang,et al.  In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array , 2017, IEEE Journal of Solid-State Circuits.

[18]  Byungsub Kim,et al.  5.8 A 9.3nW all-in-one bandgap voltage and current reference circuit , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[19]  Taewook Kim,et al.  A nano-ampere 2nd order temperature-compensated CMOS current reference using only single resistor for wide-temperature range applications , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[20]  Hui Wang,et al.  A 14.5 pW, 31 ppm/°C resistor-less 5 pA current reference employing a self-regulated push-pull voltage reference generator , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[21]  André Luiz Aita,et al.  A 1-V PTAT current reference circuit with 0.05%/V current sensitivity to VDD , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[22]  Chundong Wu,et al.  A low TC, supply independent and process compensated current reference , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[23]  Ali Far Subthreshold current reference suitable for energy harvesting: 20ppm/C and 0.1%/V at 140nW , 2015, 2015 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC).

[24]  David Blaauw,et al.  A 23pW, 780ppm/°C resistor-less current reference using subthreshold MOSFETs , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[25]  D. Sylvester,et al.  IoT design space challenges: Circuits and systems , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[26]  Santiago Celma,et al.  Precision CMOS current reference with process and temperature compensation , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[27]  Melik Yazici,et al.  Wide Range, Process and Temperature Compensated Voltage Controlled Current Source , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  David Blaauw,et al.  A Portable 2-Transistor Picowatt Temperature-Compensated Voltage Reference Operating at 0.5 V , 2012, IEEE Journal of Solid-State Circuits.

[29]  SeongHwan Cho,et al.  A 1.4-µW 24.9-ppm/°C Current Reference With Process-Insensitive Temperature Compensation in 0.18-µm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[30]  P. R. Mukund,et al.  Analog IC Design in Ultra-Thin Oxide CMOS Technologies With Significant Direct Tunneling-Induced Gate Current , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Nobutaka Kuroki,et al.  A 95-nA, 523ppm/°C, 0.6-μW CMOS current reference circuit with subthreshold MOS resistor ladder , 2011, 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011).

[32]  Nobutaka Kuroki,et al.  A nano-ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities , 2010, 2010 Proceedings of ESSCIRC.

[33]  Wei Liu,et al.  A resistor-free temperature-compensated CMOS current reference , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[34]  Zhangcai Huang,et al.  A CMOS Sub-l-V nanopower current and voltage reference with leakage compensation , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[35]  Byung-Do Yang,et al.  An accurate current reference using temperature and process compensation current mirror , 2009, 2009 IEEE Asian Solid-State Circuits Conference.

[36]  Yoon-Kyung Choi,et al.  Compact 0.7-V CMOS voltage/current reference with 54/29-ppm/°C temperature coefficient , 2009, 2009 International SoC Design Conference (ISOCC).

[37]  Trond Ytterdal,et al.  Analog Circuit Design in Nanoscale CMOS Technologies , 2009, Proceedings of the IEEE.

[38]  T. Asai,et al.  A 46-ppm/°C temperature and process compensated current reference with on-chip threshold voltage monitoring circuit , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[39]  Carlos Galup-Montoro,et al.  Temperature performance of sub-1V ultra-low power current sources , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[40]  G. Serrano,et al.  A Precision Low-TC Wide-Range CMOS Current Reference , 2008, IEEE Journal of Solid-State Circuits.

[41]  Changsik Yoo,et al.  CMOS current reference with supply and temperature compensation , 2007 .

[42]  Abdelhalim Bendali,et al.  A 1-V CMOS Current Reference With Temperature and Process Compensation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[43]  R.W. Dutton,et al.  Impact of Scaling on Analog Performance and Associated Modeling Needs , 2006, IEEE Transactions on Electron Devices.

[44]  Paolo Stefano Crovetti,et al.  A new compact temperature-compensated CMOS current reference , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[45]  K. Taniguchi,et al.  Ultralow-power temperature-insensitive current reference circuit , 2005, IEEE Sensors, 2005..

[46]  Carlos Galup-Montoro,et al.  A 2-nW 1.1-V self-biased current reference in CMOS technology , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[47]  Francisco Serra-Graells,et al.  Sub-1-V CMOS proportional-to-absolute temperature references , 2003, IEEE J. Solid State Circuits.

[48]  Carlos Galup-Montoro,et al.  An MOS transistor model for analog circuit design , 1998, IEEE J. Solid State Circuits.

[49]  H. Oguey,et al.  CMOS Current Reference without Resistance , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[50]  Boris Murmann,et al.  Systematic Design of Analog CMOS Circuits , 2021 .

[51]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .