The Mitochondrial Genomes of a Myxozoan Genus Kudoa Are Extremely Divergent in Metazoa

The Myxozoa are oligo-cellular parasites with alternate hosts—fish and annelid worms—and some myxozoan species harm farmed fish. The phylum Myxozoa, comprising 2,100 species, was difficult to position in the tree of life, due to its fast evolutionary rate. Recent phylogenomic studies utilizing an extensive number of nuclear-encoded genes have confirmed that Myxozoans belong to Cnidaria. Nevertheless, the evolution of parasitism and extreme body simplification in Myxozoa is not well understood, and no myxozoan mitochondrial DNA sequence has been reported to date. To further elucidate the evolution of Myxozoa, we sequenced the mitochondrial genomes of the myxozoan species Kudoa septempunctata, K. hexapunctata and K. iwatai and compared them with those of other metazoans. The Kudoa mitochondrial genomes code for ribosomal RNAs, transfer RNAs, eight proteins for oxidative phosphorylation and three proteins of unknown function, and they are among the metazoan mitochondrial genomes coding the fewest proteins. The mitochondrial-encoded proteins were extremely divergent, exhibiting the fastest evolutionary rate in Metazoa. Nevertheless, the dN/dS ratios of the protein genes in genus Kudoa were approximately 0.1 and similar to other cnidarians, indicating that the genes are under negative selection. Despite the divergent genetic content, active oxidative phosphorylation was indicated by the transcriptome, metabolism and structure of mitochondria in K. septempunctata. As possible causes, we attributed the divergence to the population genetic characteristics shared between the two most divergent clades, Ctenophora and Myxozoa, and to the parasitic lifestyle of Myxozoa. The fast-evolving, functional mitochondria of the genus Kudoa expanded our understanding of metazoan mitochondrial evolution.

[1]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[2]  L. Smith,et al.  Molecular evidence that the myxozoan protists are metazoans. , 1994, Science.

[3]  M. Siddall,et al.  The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic cnidaria. , 1995, The Journal of parasitology.

[4]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[5]  M. El-Matbouli,et al.  Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. , 1998, International journal for parasitology.

[6]  W. Kim,et al.  General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. , 1999, The Korean journal of parasitology.

[7]  J. Boore Animal mitochondrial genomes. , 1999, Nucleic acids research.

[8]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[9]  R. Durbin,et al.  Using GeneWise in the Drosophila annotation experiment. , 2000, Genome research.

[10]  J. Khattra,et al.  Recent Advances in Our Knowledge of the Myxozoa , 2001, The Journal of eukaryotic microbiology.

[11]  E. Houde,et al.  The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin , 2001, Hydrobiologia.

[12]  L. Bromham,et al.  Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. , 2003, Molecular biology and evolution.

[13]  G. Semenza,et al.  Oxygen Sensing : Responses and Adaption to Hypoxia , 2003 .

[14]  R. O. Poyton,et al.  A Role for the Mitochondrion and Reactive Oxygen Species in Oxygen Sensing and Adaptation to Hypoxia in Yeast , 2003 .

[15]  E. Houde,et al.  The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin , 2001, Hydrobiologia.

[16]  X. Caubit,et al.  Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. , 2004, Molecular biology and evolution.

[17]  E. Canning,et al.  Biodiversity and evolution of the Myxozoa. , 2004, Advances in parasitology.

[18]  Ewan Birney,et al.  Automated generation of heuristics for biological sequence comparison , 2005, BMC Bioinformatics.

[19]  J. Boore,et al.  The mitochondrial genome of Paraspadella gotoi is highly reduced and reveals that chaetognaths are a sister group to protostomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Robert K. Jansen,et al.  Automatic annotation of organellar genomes with DOGMA , 2004, Bioinform..

[21]  T. Ohta Population size and rate of evolution , 1972, Journal of Molecular Evolution.

[22]  Hui Zhou,et al.  The complete mitochondrial genome of a tree frog, Polypedates megacephalus (Amphibia: Anura: Rhacophoridae), and a novel gene organization in living amphibians. , 2005, Gene.

[23]  J. Bergsten A review of long‐branch attraction , 2005, Cladistics : the international journal of the Willi Hennig Society.

[24]  Peter Schattner,et al.  The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs , 2005, Nucleic Acids Res..

[25]  Masaru Tomita,et al.  SPLITS: A New Program for Predicting Split and Intron-Containing tRNA Genes at the Genome Level , 2006, Silico Biol..

[26]  J. Lom,et al.  Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. , 2006, Folia parasitologica.

[27]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[28]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[29]  B. Schierwater,et al.  Key transitions in animal evolution. , 2010, Integrative and comparative biology.

[30]  P. Holland,et al.  Buddenbrockia Is a Cnidarian Worm , 2007, Science.

[31]  D. Lavrov Key transitions in animal evolution: a mitochondrial DNA perspective. , 2007, Integrative and comparative biology.

[32]  M. Tomita,et al.  In silico screening of archaeal tRNA-encoding genes having multiple introns with bulge-helix-bulge splicing motifs. , 2007, RNA.

[33]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[34]  O. Gascuel,et al.  An improved general amino acid replacement matrix. , 2008, Molecular biology and evolution.

[35]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[36]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[37]  Ziheng Yang,et al.  MtZoa : A general mitochondrial amino acid substitutions model for animal evolutionary studies , 2009 .

[38]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[39]  N. Stanietsky,et al.  The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity , 2009, Proceedings of the National Academy of Sciences.

[40]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[41]  M. Mather,et al.  Mitochondrial evolution and functions in malaria parasites. , 2009, Annual review of microbiology.

[42]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[43]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[44]  Matthew Berriman,et al.  DNAPlotter: circular and linear interactive genome visualization , 2008, Bioinform..

[45]  Christian M. Zmasek,et al.  phyloXML: XML for evolutionary biology and comparative genomics , 2009, BMC Bioinformatics.

[46]  B. Chazotte Labeling mitochondria with fluorescent dyes for imaging. , 2009, Cold Spring Harbor protocols.

[47]  M. Holder,et al.  The phylogenetic position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal data sets. , 2010, Molecular biology and evolution.

[48]  R. Machida,et al.  Complete mitochondrial genome sequences of the three pelagic chaetognaths Sagitta nagae, Sagitta decipiens and Sagitta enflata. , 2010, Comparative biochemistry and physiology. Part D, Genomics & proteomics.

[49]  Hanna Geppert,et al.  In Silico Screening , 2010 .

[50]  Paul Stothard,et al.  Interactive microbial genome visualization with GView , 2010, Bioinform..

[51]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[52]  A. Futschik,et al.  PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals , 2011, PloS one.

[53]  Haixu Tang,et al.  RAPSearch 2 : a fast and memory-efficient protein similarity search tool for next-generation sequencing data , 2011 .

[54]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[55]  Robert D. Finn,et al.  Rfam: Wikipedia, clans and the “decimal” release , 2010, Nucleic Acids Res..

[56]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[57]  J. Mullikin,et al.  Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome , 2011, Mitochondrial DNA.

[58]  W. Martin,et al.  Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes , 2012, Microbiology and Molecular Reviews.

[59]  Y. Sugita‐Konishi,et al.  Identification of Kudoa septempunctata as the causative agent of novel food poisoning outbreaks in Japan by consumption of Paralichthys olivaceus in raw fish. , 2012, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[60]  D. Grabner,et al.  Transmission Biology of the Myxozoa , 2012 .

[61]  E. D. Carvalho,et al.  Health and Environment in Aquaculture , 2012 .

[62]  Yongan Zhao,et al.  RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data , 2011, Bioinform..

[63]  B. Lang,et al.  Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. , 2012, Molecular biology and evolution.

[64]  L. Moroz,et al.  Rapid evolution of the compact and unusual mitochondrial genome in the ctenophore, Pleurobrachia bachei. , 2012, Molecular Phylogenetics and Evolution.

[65]  A. Collins,et al.  Cnidarian phylogenetic relationships as revealed by mitogenomics , 2013, BMC Evolutionary Biology.

[66]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[67]  B. Schierwater,et al.  Global Diversity of the Placozoa , 2013, PloS one.

[68]  B. Hausdorf,et al.  Agent of Whirling Disease Meets Orphan Worm: Phylogenomic Analyses Firmly Place Myxozoa in Cnidaria , 2013, PloS one.

[69]  Y. Sugita‐Konishi,et al.  Electron microscopic study of Kudoa septempunctata infecting Paralichthys olivaceus (olive flounder). , 2013, Japanese journal of infectious diseases.

[70]  Victor V. Solovyev,et al.  The Ctenophore Genome and the Evolutionary Origins of Neural Systems , 2014, Nature.

[71]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[72]  Jie Xiong,et al.  New phylogenomic and comparative analyses provide corroborating evidence that Myxozoa is Cnidaria. , 2014, Molecular phylogenetics and evolution.

[73]  Jaap Heringa,et al.  PRALINE: a versatile multiple sequence alignment toolkit. , 2014, Methods in molecular biology.

[74]  T. Nozaki,et al.  Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. , 2014, Biochimie.

[75]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[76]  L. Moroz,et al.  Error, signal, and the placement of Ctenophora sister to all other animals , 2015, Proceedings of the National Academy of Sciences.