Resolved-Sideband Cooling of a Levitated Nanoparticle in the Presence of Laser Phase Noise.

We investigate the influence of laser phase noise heating on resolved sideband cooling in the context of cooling the center-of-mass motion of a levitated nanoparticle in a high-finesse cavity. Although phase noise heating is not a fundamental physical constraint, the regime where it becomes the main limitation in Levitodynamics has so far been unexplored and hence embodies from this point forward the main obstacle in reaching the motional ground state of levitated mesoscopic objects with resolved sideband cooling. We reach minimal center-of-mass temperatures comparable to T_{min}=10  mK at a pressure of p=3×10^{-7}  mbar, solely limited by phase noise. Finally we present possible strategies towards motional ground state cooling in the presence of phase noise.

[1]  T. S. Monteiro,et al.  Cavity cooling a single charged levitated nanosphere. , 2015, Physical review letters.

[2]  D. Bouwmeester,et al.  Creating and verifying a quantum superposition in a micro-optomechanical system , 2008, 0807.1834.

[3]  R Kaltenbaek,et al.  Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.

[4]  Joshua A. Slater,et al.  Non-classical correlations between single photons and phonons from a mechanical oscillator , 2015, Nature.

[5]  Gavin W. Morley,et al.  Free Nano-Object Ramsey Interferometry for Large Quantum Superpositions. , 2015, Physical review letters.

[6]  I. Chuang,et al.  Cavity sideband cooling of a single trapped ion. , 2009, Physical review letters.

[7]  N. Kiesel,et al.  Cavity Cooling of a Levitated Nanosphere by Coherent Scattering. , 2018, Physical review letters.

[8]  M. Aspelmeyer,et al.  Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems , 2009, 0903.1637.

[9]  O. Arcizet,et al.  Resolved Sideband Cooling of a Micromechanical Oscillator , 2007, 0709.4036.

[10]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[11]  V. Vuletić,et al.  Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering , 2001 .

[12]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[13]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[14]  Peter Kulchyski and , 2015 .

[15]  A. Schliesser,et al.  Demonstration of suppressed phonon tunneling losses in phononic bandgap shielded membrane resonators for high-Q optomechanics. , 2013, Optics express.

[16]  T. S. Monteiro,et al.  Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. , 2015, Physical review letters.

[17]  Lukas Novotny,et al.  Sensing Static Forces with Free-Falling Nanoparticles. , 2017, Physical review letters.

[18]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[19]  James Bateman,et al.  Near-field interferometry of a free-falling nanoparticle from a point-like source , 2013, Nature Communications.

[20]  Romain Quidant,et al.  Optimal Feedback Cooling of a Charged Levitated Nanoparticle with Adaptive Control. , 2018, Physical review letters.

[21]  Vijay Jain Levitated optomechanics at the photon recoil limit , 2017 .

[22]  M. Aspelmeyer,et al.  Remote quantum entanglement between two micromechanical oscillators , 2017, Nature.

[23]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[24]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[25]  Lukas Novotny,et al.  Cavity-Based 3D Cooling of a Levitated Nanoparticle via Coherent Scattering. , 2018, Physical review letters.

[26]  S. Girvin,et al.  Cryogenic optomechanics with a Si3N4 membrane and classical laser noise , 2012, 1209.2730.

[27]  Christoph Dellago,et al.  Direct Measurement of Photon Recoil from a Levitated Nanoparticle. , 2016, Physical review letters.

[28]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[29]  Stefan Kuhn,et al.  Cavity cooling of free silicon nanoparticles in high vacuum , 2013, Nature Communications.

[30]  Lukas Novotny,et al.  Thermal nonlinearities in a nanomechanical oscillator , 2013, Nature Physics.

[31]  Lukas Novotny,et al.  GHz Rotation of an Optically Trapped Nanoparticle in Vacuum. , 2018, Physical review letters.

[32]  Jan Gieseler,et al.  Levitated Nanoparticles for Microscopic Thermodynamics—A Review , 2018, Entropy.

[33]  J. Sankey,et al.  Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics , 2015, 1511.01769.

[34]  Lukas Novotny,et al.  Cooling and manipulation of a levitated nanoparticle with an optical fiber trap , 2015 .

[35]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[36]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[37]  Christoph Simon,et al.  Towards quantum superpositions of a mirror , 2004 .

[38]  Lukas Novotny,et al.  Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. , 2018, Physical review letters.

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Markus Aspelmeyer,et al.  Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator , 2017, Science.

[41]  Jan Hald,et al.  Efficient suppression of diode-laser phase noise by optical filtering , 2005 .

[42]  N. J. Engelsen,et al.  Elastic strain engineering for ultralow mechanical dissipation , 2018, Science.

[43]  Andrew G. Glen,et al.  APPL , 2001 .

[44]  Christoph Dellago,et al.  Direct measurement of Kramers turnover with a levitated nanoparticle. , 2017, Nature nanotechnology.

[45]  Hendrik Ulbricht,et al.  Force sensing with an optically levitated charged nanoparticle , 2017, 1706.09774.

[46]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[47]  Zach DeVito,et al.  Opt , 2017 .

[48]  Markus Aspelmeyer,et al.  Laser noise in cavity-optomechanical cooling and thermometry , 2012, 1210.2671.

[49]  Stefan Kuhn,et al.  Optically driven ultra-stable nanomechanical rotor , 2017, Nature Communications.

[50]  L. Diósi Laser linewidth hazard in optomechanical cooling , 2008, 0803.3760.

[52]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[53]  J. P. Moura,et al.  Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature. , 2015, Physical review letters.

[54]  Chu,et al.  Laser cooling of atoms, ions, or molecules by coherent scattering , 2000, Physical review letters.

[55]  Sumit Ghosh,et al.  Optical rotation of levitated spheres in high vacuum , 2018, Physical Review A.

[56]  Florian Blaser,et al.  Cavity cooling of an optically levitated submicron particle , 2013, Proceedings of the National Academy of Sciences.

[57]  R. Reimann,et al.  Theory for cavity cooling of levitated nanoparticles via coherent scattering: Master equation approach , 2019, Physical Review A.