An efficient box-scheme for convection–diffusion equations with sharp contrast in the diffusion coefficients
暂无分享,去创建一个
[1] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[2] Stephen F. Wornom,et al. Implicit conservative schemes for the Euler equations , 1986 .
[3] J.-P. Croisille,et al. Keller's Box-Scheme for the One-Dimensional Stationary Convection-Diffusion Equation , 2002, Computing.
[4] Jun Zhang,et al. An explicit fourth‐order compact finite difference scheme for three‐dimensional convection–diffusion equation , 1998 .
[5] A I Tolstykh. High Accuracy Non-Centered Compact Difference Schemes for Fluid Dynamics Applications , 1994 .
[6] R. Noyé,et al. Numerical Solutions of Partial Differential Equations , 1983 .
[7] G. Hedstrom. Models of difference schemes for _{}+ₓ=0 by partial differential equations , 1975 .
[8] B. Courbet. Schémas à deux points pour la simulation numérique des écoulements , 1990 .
[9] Graham F. Carey,et al. Higher-order compact mixed methods , 1997 .
[10] B. J. Noye,et al. Finite difference methods for solving the two‐dimensional advection–diffusion equation , 1989 .
[11] Stephen F. Wornom,et al. Application of two-point difference schemes to the conservative Euler equations for one-dimensional flows , 1982 .
[12] Optimal and near-optimal advection-diffusion finite-difference schemes. II. Unsteadiness and non-uniform grid , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[13] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[14] Jean-Pierre Croisille,et al. Finite volume box schemes on triangular meshes , 1998 .
[15] Armel de La Bourdonnaye,et al. On the derivation of the modified equation for the analysis of linear numerical methods , 1997 .
[16] H. B. Keller. A New Difference Scheme for Parabolic Problems , 1971 .
[17] Jean-Pierre Croisille,et al. Some nonconforming mixed box schemes for elliptic problems , 2002 .
[18] Jean-Jacques Chattot,et al. A “box-scheme” for the euler equations , 1987 .
[19] R. Courbet. Etude d'une famille de schémas boîte à deux points et application à la dynamique des gaz monodimensionnelle , 1991 .
[20] C. Hirsch,et al. A class of central bidiagonal schemes with implicit boundary conditions for the solution of Euler's equations , 1983 .
[21] V. Martinez,et al. A finite volume method with a modified ENO scheme using a Hermite interpolation to solve advection diffusion equations , 2001 .
[22] Jean-Pierre Croisille,et al. Finite Volume Box Schemes and Mixed Methods , 2000 .
[23] J. Douglas,et al. A general formulation of alternating direction methods , 1964 .
[24] An investigation of spatial and temporal weighting schemes for use in unstructured mesh control volume finite element methods , 2003 .
[25] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[26] Alain Rigal. High order difference schemes for unsteady one-dimensional diffusion-convection problems , 1994 .
[27] G. Hedstrom,et al. Numerical Solution of Partial Differential Equations , 1966 .