A novel approach for studies of multispectral bioluminescence tomography

Bioluminescence tomography (BLT) is a promising new area in biomedical imaging. The goal of BLT is to provide quantitative reconstruction of bioluminescent source distribution within a small animal from optical signals on the animal’s body surface. The multispectral version of BLT takes advantage of the measurement information in different spectrum bands. In this paper, we propose a novel approach for the multispectral BLT. The new feature of the mathematical framework is to use numerical prediction results based on two related but distinct boundary value problems. This mathematical framework includes the conventional framework in the study of multispectral BLT. For the new framework introduced here, we establish the solution existence, uniqueness and continuous dependence on data, and characterize the limiting behaviors when the regularization parameter approaches zero or when the penalty parameter approaches infinity. We study two kinds of numerical schemes for multispectral BLT and derive error estimates for the numerical solutions. We also present numerical examples to show the performance of the numerical methods.

[1]  V. A. Morozov,et al.  Methods for Solving Incorrectly Posed Problems , 1984 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[4]  Ronald J. Jaszczak,et al.  Guest Editorial Toward Molecular Imaging , 2005, IEEE Trans. Medical Imaging.

[5]  Wenxiang Cong,et al.  Mathematical theory and numerical analysis of bioluminescence tomography , 2006 .

[6]  C. Contag,et al.  Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. , 2005, Journal of biomedical optics.

[7]  M. Jiang,et al.  Uniqueness theorems in bioluminescence tomography. , 2004, Medical physics.

[8]  G. Vainikko The discrepancy principle for a class of regularization methods , 1982 .

[9]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[10]  Uno Hämarik,et al.  On the Monotone Error Rule for Parameter Choice in Iterative and Continuous Regularization Methods , 2001 .

[11]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[12]  R. Weissleder,et al.  Fluorescence molecular tomography resolves protease activity in vivo , 2002, Nature Medicine.

[13]  M. Schweiger,et al.  A finite element approach for modeling photon transport in tissue. , 1993, Medical physics.

[14]  G. Wahba Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .

[15]  Geoffrey McLennan,et al.  Practical reconstruction method for bioluminescence tomography. , 2005, Optics express.

[16]  Weimin Han,et al.  Theoretical and numerical analysis on multispectral bioluminescence tomography , 2007 .

[17]  Uno Hämarik,et al.  The use of monotonicity for choosing the regularization parameter in ill-posed problems , 1999 .

[18]  Ge Wang,et al.  Multispectral Bioluminescence Tomography: Methodology and Simulation , 2006, Int. J. Biomed. Imaging.

[19]  M. Schweiger,et al.  The finite element method for the propagation of light in scattering media: boundary and source conditions. , 1995, Medical physics.

[20]  Per Christian Hansen,et al.  Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..

[21]  R Weissleder,et al.  Molecular imaging. , 2009, Radiology.

[22]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[23]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[24]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[25]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[26]  C. Contag,et al.  It's not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology , 2002, Journal of magnetic resonance imaging : JMRI.

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  D. Calvetti,et al.  Tikhonov regularization and the L-curve for large discrete ill-posed problems , 2000 .

[29]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .