Isogeometric Analysis of Boundary Integral Equations

Abstract : Isogeometric analysis is applied to boundary integral equations corresponding to boundary-value problems governed by Laplace's equation. It is shown that the smoothness of geometric parameterizations central to computer-aided design can be exploited for regularizing integral operators. As a result one obtains high-order collocation methods based on superior approximation and numerical integration schemes and well-conditioned systems of linear algebraic equations. It is demonstrated that the proposed approach allows one to solve boundary-value problems with an accuracy close to machine precision.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  James Bremer,et al.  A Nyström method for weakly singular integral operators on surfaces , 2012, J. Comput. Phys..

[3]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[4]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[5]  K. H. Muci-Küchler,et al.  A weakly singular formulation of traction and tangent derivative boundary integral equations in three dimensional elasticity , 1993 .

[6]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[7]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[8]  Kendall E. Atkinson,et al.  Iterative Solution of Linear Systems Arising from the Boundary Integral Method , 1992, SIAM J. Sci. Comput..

[9]  Panagiotis D. Kaklis,et al.  A CATIA Ship-parametric model for isogeometric hull optimization with respect to wave resistance , 2015 .

[10]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[11]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[12]  Michael A. Scott,et al.  T-splines as a design-through-analysis technology , 2011 .

[13]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[14]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[15]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[16]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[17]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[18]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[19]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[20]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[21]  Malcolm Sabin,et al.  Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[22]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[23]  H. Ehlers LECTURERS , 1948, Statistics for Astrophysics.

[24]  Panagiotis D. Kaklis,et al.  A BEM-isogeometric method for the ship wave-resistance problem , 2013 .

[25]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[26]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[27]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[28]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[29]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[30]  Panagiotis D. Kaklis,et al.  A BEM-IsoGeometric method with application to the wavemaking resistance problem of ships at constant speed , 2011 .

[31]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[32]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[33]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[34]  G. Folland Introduction to Partial Differential Equations , 1976 .

[35]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[36]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[37]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[38]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[39]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[40]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[41]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[42]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[43]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[44]  J. Trevelyan,et al.  Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems , 2013 .

[45]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[46]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[47]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[48]  C. Schwab,et al.  On numerical cubatures of singular surface integrals in boundary element methods , 1992 .

[49]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[50]  Zafer Gürdal,et al.  On the variational formulation of stress constraints in isogeometric design , 2010 .

[51]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[52]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[53]  Panagiotis D. Kaklis,et al.  An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.

[54]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[55]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[56]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..