Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review

Abstract Reduction of greenhouse gas emissions has become one of the most impending global issues. Innovative technological development for removing acid gases such as CO2 and H2S from natural gas (NG) and other sources is indispensable for clean energy production. The presence of these gases in NG deteriorates its quality (heating value) as well as liquefaction process performance. Thus, removal of acid gases up to an acceptable specification is mandatory prior to its transportation for domestic and commercial use. Currently, majority of natural gas sweetening and post combustion CO2 capture technologies are amine-based; however, amine based technologies have a couple of disadvantages such as: solvent loss, corrosive nature and high heat of solution. In contrast, ionic liquids (ILs) based separations are less energy intensive and have gain popularity over amines as CO2 scrubbing agents, especially due to their exceptional physicochemical properties. However, ILs also have few disadvantages such as hygroscopic nature, high viscosity and high cost. Thus, coupling of the advantages of both ILs and amines may provide a better route for effective capture of CO2. The main target of the coupling is to take advantage of good aspects of parent solvents. Recently, a new class of solvents called binding organic liquids (BOLs) or switchable solvents has also been discovered. BOLs have tunable physicochemical properties like ILs. In this context, recent state-of-the-art of comprehensive applications of aqueous amines, ILs, IL-amine blends and BOLs for natural gas sweetening and health/environmental impacts of amine, ILs and BOLs are reviewed, together with a set of critical conclusions and future directions. It has been noticed that the combination of room temperature ILs with secondary, tertiary and sterically hindered amine are highly efficient in CO2 capture and may be a boon for natural gas sweetening and post combustion CO2 capture technologies. It is also observed that the stripping of CO2 from CO2BOLs is less energy consuming process as in most of the cases CO2 can be separated from BOLs by modest heating or simple inert gas bubbling. Overall, CO2BOLs have enormous potential as energy-efficient organic CO2 scrubbers. Nevertheless, to accelerate technology transfer to industrialization, advances in the area of systematic platform technologies need to be synchronized to current technologies: molecular simulation of solvents; solvent properties and thermodynamic models; process engineering studies through process design, simulation, optimization and scale-up; multi-scale modeling for optimal solvent selection. In particular, the integration of physicochemical property and thermodynamic model packages to a set of commercial process engineering simulators is one of the impending research areas.

[1]  M. Shiflett,et al.  Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6] , 2010 .

[2]  J. Brennecke,et al.  Gas Solubilities in 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[3]  Chengdong Zhang,et al.  Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria , 2010 .

[4]  Collin R. Becker,et al.  Low Pressure Hydrocarbon Solubility in Room Temperature Ionic Liquids Containing Imidazolium Rings Interpreted Using Regular Solution Theory , 2005 .

[5]  Eric Croiset,et al.  Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method , 2005 .

[6]  O. C. Sandall,et al.  Selective Removal of Hydrogen Sulfide from Gases Containing Hydrogen Sulfide and Carbon Dioxide Using Diethanolamine , 1983 .

[7]  R. Noble,et al.  Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture. , 2010, Accounts of chemical research.

[8]  R. Singer,et al.  The design and synthesis of biodegradable pyridinium ionic liquids , 2008 .

[9]  A. Kohl,et al.  Selective Absorption of Hydrogen Sulfide from Gas Streams , 1950 .

[10]  Xiangping Zhang,et al.  Solubilities of gases in novel alcamines ionic liquid 2- 2-hydroxyethyl (methyl) amino ethanol chloride , 2011 .

[11]  S. Malhotra,et al.  Toxicity of imidazolium- and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridinium tetrafluoroborate. , 2011, Chemosphere.

[12]  A. Edelman,et al.  Hindered amines yield improved gas treating , 1984 .

[13]  M. Shiflett,et al.  Separation of Carbon Dioxide and Sulfur Dioxide Using Room-Temperature Ionic Liquid [bmim][MeSO4] , 2010 .

[14]  Sivaji Bandyopadhyay,et al.  Selective absorption of H2S from gas streams containing H2S and CO2 into aqueous solutions of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol , 2004 .

[15]  Faïçal Larachi,et al.  Corrosion Behavior of Carbon Steel in Alkanolamine/ Room-Temperature Ionic Liquid Based CO2 Capture Systems , 2012 .

[16]  K. Shen,et al.  Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine , 1992 .

[17]  J. A. Bullin,et al.  Design & Operation of a Selective Sweetening Plant Using MDEA , 1986 .

[18]  I. Marrucho,et al.  High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids , 2010 .

[19]  Ying Zhang,et al.  Thermodynamic Modeling for CO2Absorption in Aqueous MDEA Solution with Electrolyte NRTL Model , 2011 .

[20]  D. Rashtchian,et al.  Predictive models for permeability and diffusivity of CH4 through imidazolium-based supported ionic liquid membranes , 2011 .

[21]  Bernd Rumpf,et al.  VLE modelling for aqueous systems containing methyldiethanolamine, carbon dioxide and hydrogen sulfide , 1997 .

[22]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[23]  Andrew L. Ferguson,et al.  Diffusivities of Gases in Room-Temperature Ionic Liquids: Data and Correlations Obtained Using a Lag-Time Technique , 2005 .

[24]  João A. P. Coutinho,et al.  High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids , 2009 .

[25]  B. Han,et al.  Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters , 2008 .

[26]  G. Versteeg,et al.  CO2 capture from power plants. Part I: A parametric study of the technical performance based on monoethanolamine , 2007 .

[27]  A. Yokozeki,et al.  Solubilities and Diffusivities of Carbon Dioxide in Ionic Liquids: [bmim][PF6] and [bmim][BF4] , 2005 .

[28]  P. Scovazzo,et al.  Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes , 2009 .

[29]  A. E. Mather,et al.  The solubility of carbon dioxide and hydrogen sulfide in a 35 wt% aqueous solution of methyldiethanolamine , 1993 .

[30]  C. Peters,et al.  Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide , 2007 .

[31]  Randall J. Bernot,et al.  Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling , 2006 .

[32]  V. F. Yesavage,et al.  Predictions of the solubility of acid gases in monoethanolamine (MEA) and methyldiethanolamine (MDEA) solutions using the electrolyte-UNIQUAC model , 2001, Fluid Phase Equilibria.

[33]  G. Sartori,et al.  Sterically hindered amines for carbon dioxide removal from gases , 1983 .

[34]  Sung Young Kim,et al.  Simulation of CO2 removal in a split-flow gas sweetening process , 2011 .

[35]  H W Leung,et al.  Toxicology of mono-, di-, and triethanolamine. , 1997, Reviews of environmental contamination and toxicology.

[36]  M. Hashim,et al.  Absorption of carbon dioxide in the aqueous mixtures of methyldiethanolamine with three types of imidazolium-based ionic liquids , 2011 .

[37]  Eric Croiset,et al.  Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion , 2003 .

[38]  M. Shiflett,et al.  Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. , 2007, The journal of physical chemistry. B.

[39]  A. Mehdizadeh,et al.  Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions , 2010 .

[40]  Edward S. Rubin,et al.  Comparative assessments of fossil fuel power plants with CO2 capture and storage , 2005 .

[41]  Brian J. Briscoe,et al.  Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures , 2000 .

[42]  G. Maurer,et al.  Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate , 2013 .

[43]  Haifeng Dong,et al.  Carbon capture with ionic liquids: overview and progress , 2012 .

[44]  A. Safekordi,et al.  Solubility of H2S in Ionic Liquids 1-Ethyl-3-methylimidazolium Hexafluorophosphate ([emim][PF6]) and 1-Ethyl-3-methylimidazolium Bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]) , 2010 .

[45]  C. Afonso,et al.  Impact of ionic liquids in environment and humans: An overview , 2010, Human & experimental toxicology.

[46]  Geert Versteeg,et al.  ON THE KINETICS BETWEEN CO2 AND ALKANOLAMINES BOTH IN AQUEOUS AND NON-AQUEOUS SOLUTIONS. AN OVERVIEW , 1996 .

[47]  Phillip K. Koech,et al.  A reversible zwitterionic SO2-binding organic liquid , 2010 .

[48]  M. Shiflett,et al.  Separation of N2O and CO2 using room-temperature ionic liquid [bmim][BF4]. , 2011, The journal of physical chemistry. B.

[49]  Joan F Brennecke,et al.  Enhancement of oxygen and methane solubility in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide using carbon dioxide. , 2005, Chemical communications.

[50]  D. V. Krevelen,et al.  Composition and vapour pressures of aqueous solutions of ammmonia, carbon dioxide and hydrogen sulphide , 2010 .

[51]  Kenton Atwood,et al.  Equilibria for the System, Ethanolamines-Hydrogen Sulfide-Water , 1957 .

[52]  Charles A. Eckert,et al.  Green chemistry: Reversible nonpolar-to-polar solvent , 2005, Nature.

[53]  C. Eckert,et al.  Switchable Solvents Consisting of Amidine/Alcohol or Guanidine/Alcohol Mixtures , 2008 .

[54]  Byung-chul Lee,et al.  Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide , 2006 .

[55]  M. Iliuta,et al.  Sterically Hindered Amine-Based Absorbents for the Removal of CO2 from Gas Streams , 2012 .

[56]  G. Maurer,et al.  Solubility of CO2 in the ionic liquid [hmim][Tf2N] , 2006 .

[57]  G. Maurer,et al.  Solubility of Carbon Dioxide in Aqueous Solutions of N-Methyldiethanolamine in the Low Gas Loading Region , 2006 .

[58]  Honglai Liu,et al.  Modeling pVT Properties and Vapor-Liquid Equilibrium of Ionic Liquids Using Cubic-plus-association Equation of State , 2011 .

[59]  H. Renon,et al.  Representation of excess properties of electrolyte solutions using a new equation of state , 1993 .

[60]  Joan F. Brennecke,et al.  Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[61]  Philip R. Watson,et al.  Surface Tension Measurements of N-Alkylimidazolium Ionic Liquids , 2001 .

[62]  J. Prausnitz,et al.  In vitro cytotoxicities of ionic liquids: Effect of cation rings, functional groups, and anions , 2009, Environmental toxicology.

[63]  A. Yokozeki,et al.  Separation of Carbon Dioxide and Sulfur Dioxide Gases Using Room-Temperature Ionic Liquid [hmim][Tf2N] , 2009 .

[64]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[65]  Ji-Ho Yoon,et al.  Solubility of Carbon Dioxide in Aqueous Solutions of 2-Amino-2-methyl-1,3-propanediol , 1998 .

[66]  Zhang Feng,et al.  Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA , 2010 .

[67]  Xiangping Zhang,et al.  Novel alcamines ionic liquids based solvents: Preparation, characterization and applications in carbon dioxide capture , 2011 .

[68]  Xiangping Zhang,et al.  Density, Viscosity, and Performances of Carbon Dioxide Capture in 16 Absorbents of Amine + Ionic Liquid + H2O, Ionic Liquid + H2O, and Amine + H2O Systems , 2010 .

[69]  Alan E. Mather,et al.  The solubility of CO2 in a 30 mass percent monoethanolamine solution , 1995 .

[70]  Rafael Eustaquio-Rincón,et al.  Corrosion in Aqueous Solution of Two Alkanolamines with CO2and H2S:N-Methyldiethanolamine + Diethanolamine at 393 K , 2008 .

[71]  W. Shi,et al.  Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]. , 2008, The journal of physical chemistry. B.

[72]  Hiwa Khaledi,et al.  Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine , 2008 .

[73]  J. Repke,et al.  Techno-Economic Analysis of Postcombustion Processes for the Capture of Carbon Dioxide from Power Plant Flue Gas , 2010 .

[74]  C. Ghotbi,et al.  Solubility of H2S in ionic liquids [hmim][PF6], [hmim][BF4], and [hmim][Tf2N] , 2009 .

[75]  A. Chrobok,et al.  Monoethanolamine and ionic liquid aqueous solutions as effective systems for CO2 capture , 2013 .

[76]  I. Baek,et al.  Polymer-ionic liquid gels for enhanced gas transport. , 2009, Chemical communications.

[77]  P. Wasserscheid,et al.  Ionic Liquids-New "Solutions" for Transition Metal Catalysis. , 2000, Angewandte Chemie.

[78]  Michael Maiwald,et al.  Online NMR spectroscopic study of species distribution in MEA-H2O-CO2 and DEA-H2O-CO2 , 2008 .

[79]  M. Gomes,et al.  Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate , 2006 .

[80]  Howard J. Herzog,et al.  Capture-ready coal plants—Options, technologies and economics , 2007 .

[81]  Chul-Woong Cho,et al.  Environmental fate and toxicity of ionic liquids: a review. , 2010, Water research.

[82]  P. Jessop,et al.  Switchable-polarity solvents prepared with a single liquid component. , 2008, The Journal of organic chemistry.

[83]  Joan F Brennecke,et al.  Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide: comparison to other ionic liquids. , 2007, Accounts of chemical research.

[84]  Satish Kumar,et al.  LNG: An eco-friendly cryogenic fuel for sustainable development , 2011 .

[85]  Manya Ranjan,et al.  Economic and energetic analysis of capturing CO2 from ambient air , 2011, Proceedings of the National Academy of Sciences.

[86]  W. Hong,et al.  Solubilities of Carbon Dioxide in Aqueous Mixtures of Diethanolamine and 2-Amino-2-methyl-1-Propanol , 1996 .

[87]  Xiangping Zhang,et al.  A novel ionic liquids-based scrubbing process for efficient CO2 capture , 2010 .

[88]  Ivo Leito,et al.  Performance of single-component CO2-binding organic liquids (CO2BOLs) for post combustion CO2 capture , 2011 .

[89]  Jason E. Bara,et al.  Room-Temperature Ionic Liquids: Temperature Dependence of Gas Solubility Selectivity , 2008 .

[90]  B. Buszewski,et al.  Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.) , 2009, Analytical and bioanalytical chemistry.

[91]  S. Bandyopadhyay,et al.  Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol , 1993 .

[92]  W. Shi,et al.  Molecular simulations and experimental studies of solubility and diffusivity for pure and mixed gases of H2, CO2, and Ar absorbed in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]). , 2010, The journal of physical chemistry. B.

[93]  Xiangping Zhang,et al.  Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures , 2005 .

[94]  G. W. Meindersma,et al.  Kinetics of absorption of CO2 in amino-functionalized ionic liquids , 2011 .

[95]  M. Akbar,et al.  Thermophysical properties for the binary mixtures of 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [hmim][Tf2N] + N-methyldiethanolamine (MDEA) at temperatures (303.15 to 323.15) K , 2012 .

[96]  Thomas Foo,et al.  Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. , 2008, The journal of physical chemistry. B.

[97]  J. Bara,et al.  Free Volume as the Basis of Gas Solubility and Selectivity in Imidazolium-Based Ionic Liquids , 2012 .

[98]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[99]  Jin Han,et al.  Determination of Absorption Rate and Capacity of CO2 in Ionic Liquids at Atmospheric Pressure by Thermogravimetric Analysis , 2011 .

[100]  K. Seddon,et al.  Influence of chloride, water, and organic solvents on the physical properties of ionic liquids , 2000 .

[101]  S. Stolte,et al.  The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery , 2007 .

[102]  E. Schluecker,et al.  Determination of the diffusion coefficient of CO2 in the ionic liquid EMIM NTf2 using online FTIR measurements , 2012 .

[103]  P. Scammells,et al.  Biodegradable ionic liquids : Part III. The first readily biodegradable ionic liquids , 2006 .

[104]  Charles F. Kulpa,et al.  Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids , 2005 .

[105]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[106]  Wenchuan Wang,et al.  Screening of ionic liquids to capture CO2 by COSMO-RS and experiments , 2008 .

[107]  D. Gin,et al.  Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes , 2007 .

[108]  Meng-Hui Li,et al.  Carbon dioxide solubility in some ionic liquids at moderate pressures , 2009 .

[109]  Dongbing Zhao,et al.  Toxicity of Ionic Liquids , 2007 .

[110]  Thijs J. H. Vlugt,et al.  State-of-the-Art of CO2 Capture with Ionic Liquids , 2012 .

[111]  G. Maurer,et al.  Solubility of the Single Gases Methane and Xenon in the Ionic Liquid [hmim][Tf2N]† , 2007 .

[112]  J. Coutinho,et al.  Simple screening method to identify toxic/non-toxic ionic liquids: agar diffusion test adaptation. , 2012, Ecotoxicology and environmental safety.

[113]  Guangren Yu,et al.  Insight into the cation-anion interaction in 1,1,3,3-tetramethylguanidinium lactate ionic liquid , 2007 .

[114]  J. Brennecke,et al.  High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids , 2004 .

[115]  Xiangping Zhang,et al.  Dual amino-functionalised phosphonium ionic liquids for CO2 capture. , 2009, Chemistry.

[116]  C. Ghotbi,et al.  Solubility of H2S in Ionic Liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N] , 2009 .

[117]  W. Shi,et al.  Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([hmim][FEP]): a molecular view by computer simulations. , 2009, The journal of physical chemistry. B.

[118]  V. V. Mahajani,et al.  Kinetics of reactions between carbon dioxide and alkanolamines , 1988 .

[119]  Luzheng Zhang,et al.  Representing Vapor−Liquid Equilibrium for an Aqueous MEA−CO2 System Using the Electrolyte Nonrandom-Two-Liquid Model , 1999 .

[120]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[121]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[122]  Omar M. Basha,et al.  Development of a Conceptual Process for Selective CO2 Capture from Fuel Gas Streams Using [hmim][Tf2N] Ionic Liquid as a Physical Solvent , 2013 .

[123]  B. F. Goodrich,et al.  Equimolar CO(2) absorption by anion-functionalized ionic liquids. , 2010, Journal of the American Chemical Society.

[124]  K. L. Jones,et al.  Hydrogen Sulfide and Carbon Dioxide Removal from Dry Fuel Gas Streams Using an Ionic Liquid as a Physical Solvent , 2009 .

[125]  M. J. Moran,et al.  Thermal design and optimization , 1995 .

[126]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[127]  R. Noble,et al.  Diffusion and Solubility Measurements in Room Temperature Ionic Liquids , 2006 .

[128]  John Newman,et al.  Vapor‐liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes , 1978 .

[129]  R. Singer,et al.  Further investigation of the biodegradability of imidazolium ionic liquids , 2009 .

[130]  Joan F. Brennecke,et al.  High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes ! , 2008 .

[131]  Phillip K. Koech,et al.  CO2 -binding organic liquids, an integrated acid gas capture system , 2011 .

[132]  Joan F. Brennecke,et al.  Ionic Liquids for CO2 Capture and Emission Reduction , 2010 .

[133]  G. Sartori,et al.  A new, hindered amine concept for simultaneous removal of CO2 and H2S from gases , 1984 .

[134]  Christian Silvio Pomelli,et al.  Influence of the interaction between hydrogen sulfide and ionic liquids on solubility: experimental and theoretical investigation. , 2007, The journal of physical chemistry. B.

[135]  T. J. Edwards,et al.  Thermodynamics of aqueous solutions containing volatile weak electrolytes , 1975 .

[136]  M. Gomes,et al.  Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric , 2006 .

[137]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[138]  Yeo Il Yoon,et al.  Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions , 2013 .

[139]  M. Akbar,et al.  Thermophysical properties of 1-hexyl-3-methylimidazolium tetrafluoroborate [hmim][BF4] + N-methyldiethanolamine (MDEA) at temperatures (303.15 to 323.15) K , 2013 .

[140]  J. Coutinho,et al.  Solubility of CO2 in 1-butyl-3-methyl-imidazolium-trifluoro acetate ionic liquid studied by Raman spectroscopy and DFT investigations. , 2011, The journal of physical chemistry. B.

[141]  Kaj Thomsen,et al.  Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions , 2009 .

[142]  G. Tao,et al.  Absorption and Capture of Methane into Ionic Liquid , 2006 .

[143]  João G Crespo,et al.  Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. , 2007, Chemistry.

[144]  B. Sohbi,et al.  The Using of Mixing Amines in an Industrial Gas Sweetening Plant , 2007 .

[145]  J. Dixon,et al.  Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community , 2007, Biodegradation.

[146]  G. Maurer,et al.  Solubility of the Single Gases Carbon Dioxide and Hydrogen in the Ionic Liquid (bmpy)(Tf2N) , 2010 .

[147]  Junhua Huang,et al.  Why are Ionic Liquids Attractive for CO2 Absorption? An Overview , 2009 .

[148]  Ying Zhang,et al.  Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model , 2011 .

[149]  Xiangping Zhang,et al.  Solubility of CO2 in Sulfonate Ionic Liquids at High Pressure , 2005 .

[150]  Surya S. Moganty,et al.  Diffusivity of Carbon Dioxide in Room-Temperature Ionic Liquids , 2010 .

[151]  Y. Park,et al.  Phase Equilibria of the 1-Hexyl-2,3-dimethylimidazolium Bis(trifluoromethylsulfonyl)imide and Carbon Dioxide Binary System and 1-Octyl-2,3-dimethylimidazolium Bis(trifluoromethylsulfonyl)imide and Carbon Dioxide Binary System , 2012 .

[152]  J. Kalka,et al.  An assessment of the toxicity of pyridinium chlorides and their biodegradation intermediates. , 2003, Environment international.

[153]  A. Mehdizadeh,et al.  Solubility and Diffusion of H2S and CO2 in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate , 2010 .

[154]  J. Brennecke,et al.  Reaction kinetics of CO2 absorption in to phosphonium based anion-functionalized ionic liquids. , 2013, Physical chemistry chemical physics : PCCP.

[155]  M. Hashim,et al.  Kinetics of Carbon Dioxide absorption into aqueous MDEA + [bmim][BF4] solutions from 303 to 333 K , 2012 .

[156]  Chul-Woong Cho,et al.  Biodegradability of fluoroorganic and cyano-based ionic liquid anions under aerobic and anaerobic conditions , 2012 .

[157]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[158]  Yaser Khojasteh Salkuyeh,et al.  Comparison of MEA and DGA performance for CO2 capture under different operational conditions , 2012 .

[159]  W. Kritpiphat,et al.  NEW MODIFIED KENT-EISENBERG MODEL FOR PREDICTING CARBON DIOXIDE SOLUBILITY IN AQUEOUS 2-AMINO-2-METHYL-1-PROPANOL (AMP) SOLUTIONS , 1996 .

[160]  F. Rodríguez,et al.  Anion effects on kinetics and thermodynamics of CO2 absorption in ionic liquids. , 2013, The journal of physical chemistry. B.

[161]  M. Shiflett,et al.  Separation of CO2 and H2S Using Room-Temperature Ionic Liquid [bmim] [MeSO4] , 2010 .

[162]  G. Kuranov,et al.  Solubility of single gases carbon dioxide and hydrogen sulfide in aqueous solutions of N-methyldiethanolamine in the temperature range 313--413 K at pressures up to 5 MPa , 1996 .

[163]  Alan E. Mather,et al.  Solubility of Hydrogen Sulfide in [bmim][PF6] , 2007 .

[164]  K. R. Seddon,et al.  The distillation and volatility of ionic liquids , 2006, Nature.

[165]  F. Endres,et al.  Air and water stable ionic liquids in physical chemistry. , 2006, Physical chemistry chemical physics : PCCP.

[166]  K. Seddon,et al.  Viscosity and Density of 1-Alkyl-3-methylimidazolium Ionic Liquids , 2002 .

[167]  Sheng Dai,et al.  Examination of the Potential of Ionic Liquids for Gas Separations , 2005 .

[168]  R. W. Bucklin DGA--a workhorse for gas sweetening , 1982 .

[169]  S. S. Ashour,et al.  Absorption of Carbon Dioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine , 1995 .

[170]  J. Bara,et al.  Reactive and Reversible Ionic Liquids for CO2 Capture and Acid Gas Removal , 2012 .

[171]  Keith E. Gubbins,et al.  SAFT prediction of vapour-liquid equilibria of mixtures containing carbon dioxide and aqueous monoethanolamine or diethanolamine , 1999 .

[172]  Chul-Woong Cho,et al.  Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. , 2009, Environmental science & technology.

[173]  Sung Chan Nam,et al.  Solubility of CO2 in Aqueous Methyldiethanolamine Solutions , 1997 .

[174]  Kristin Rist Sørheim,et al.  Environmental impact of amines , 2009 .

[175]  K. Shen,et al.  Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine , 1993 .

[176]  Alan E. Mather,et al.  Correlation and prediction of the solubility of carbon dioxide in a mixed alkanolamine solution , 1994 .

[177]  B. Han,et al.  Switching the basicity of ionic liquids by CO2 , 2008 .

[178]  Paul Scovazzo,et al.  Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research , 2009 .

[179]  S. Bandyopadhyay,et al.  Simultaneous absorption of carbon dioxide and hydrogen sulfide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine , 2005 .

[180]  David J. Heldebrant,et al.  Organic liquid CO2 capture agents with high gravimetric CO2 capacity , 2008 .

[181]  J. Coutinho,et al.  The polarity effect upon the methane solubility in ionic liquids: a contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities , 2011 .

[182]  W. Fürst,et al.  Representation of CO2 and H2S Absorption by Aqueous Solutions of Diethanolamine Using an Electrolyte Equation of State , 1999 .

[183]  Faïçal Larachi,et al.  CO2 capture in alkanolamine/room-temperature ionic liquid emulsions: A viable approach with carbamate crystallization and curbed corrosion behavior , 2012 .

[184]  R. Guirardello,et al.  Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state , 2013 .

[185]  D. Rashtchian,et al.  An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: Investigation of temperature fluctuations effects , 2010 .

[186]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[187]  Karine Ballerat-Busserolles,et al.  Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions , 2009 .

[188]  P. Scammells,et al.  Biodegradable ionic liquids Part II. Effect of the anion and toxicology , 2005 .

[189]  B. F. Goodrich,et al.  Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide , 2011 .

[190]  Byung-chul Lee,et al.  Measurement of CO 2 Solubility in Ionic Liquids: [BMP][TfO] and [P14,6,6,6][Tf 2 N] by Measuring Bubble-Point Pressure , 2010 .

[191]  Xuezhong He,et al.  Physical Properties of Ionic Liquids: Database and Evaluation , 2006 .

[192]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquid [bmim][PF6] , 2003 .

[193]  T. Vlugt,et al.  Solubility of CO2 in the ionic liquids (TBMN)(MeSO4) and (TBMP)(MeSO4) , 2012 .

[194]  A. E. Mather,et al.  Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines , 1993 .

[195]  F. Rodríguez,et al.  CO2/N2 Selectivity Prediction in Supported Ionic Liquid Membranes (SILMs) by COSMO-RS , 2011 .

[196]  R. Singer,et al.  Biodegradable pyridinium ionic liquids: design, synthesis and evaluation , 2009 .

[197]  A. Mehdizadeh,et al.  Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions , 2010 .

[198]  Toward development of activity coefficient models for process and product design of complex chemical systems , 2006 .

[199]  T. Murugesan,et al.  Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600 kPa , 2012 .

[200]  Youqing Shen,et al.  Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. , 2006, Chemistry.

[201]  E. Beckman,et al.  A challenge for green chemistry: designing molecules that readily dissolve in carbon dioxide. , 2004, Chemical communications.

[202]  Tiancheng Mu,et al.  Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion , 2011 .

[203]  Kaj Thomsen,et al.  Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems , 1999 .

[204]  P. Jessop,et al.  Reversible uptake of COS, CS2, and SO2: ionic liquids with O-alkylxanthate, O-alkylthiocarbonyl, and O-alkylsulfite anions. , 2009, Chemistry.

[205]  Alan E. Mather,et al.  A mathematical model for equilibrium solubility of hydrogen sulfide and carbon dioxide in aqueous alkanolamine solutions , 1981 .

[206]  S. Stolte,et al.  Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. , 2007, Ecotoxicology and environmental safety.

[207]  P. Tontiwachwuthikul,et al.  Solubility of CO2 in 2-amino-2-methyl-1-propanol solutions , 1991 .

[208]  F. Karadaş,et al.  Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening , 2010 .

[209]  R. Selin The Outlook for Energy: A View to 2040 , 2013 .

[210]  G. W. Meindersma,et al.  Solvent properties of functionalized ionic liquids for CO2 absorption , 2007 .

[211]  H. Gunaratne,et al.  A high throughput screen to test the biocompatibility of water-miscible ionic liquids , 2009 .

[212]  Maggel Deetlefs,et al.  Ionic liquids: fact and fiction , 2006 .

[213]  Gary T. Rochelle,et al.  Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of H2S and CO2 solubility in aqueous MDEA and CO2 solubility in aqueous mixtures of MDEA with MEA or DEA , 1991 .

[214]  K. R. Seddon,et al.  Applications of ionic liquids in the chemical industry. , 2008, Chemical Society reviews.

[215]  Paul Scovazzo,et al.  Correlations of Low-Pressure Carbon Dioxide and Hydrocarbon Solubilities in Imidazolium-, Phosphonium-, and Ammonium-Based Room-Temperature Ionic Liquids. Part 1. Using Surface Tension , 2008 .

[216]  S. Lustig,et al.  Phase behavior of CO2 in room-temperature ionic liquid 1-ethyl-3-ethylimidazolium acetate. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[217]  Sheng Dai,et al.  Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance , 2004 .

[218]  G. Maurer,et al.  Solubility of the Single Gases Methane and Xenon in the Ionic Liquid [bmim][CH3SO4] , 2007 .

[219]  G. Kuranov,et al.  Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine at Temperatures from 313 to 393 K and Pressures up to 7.6 MPa: New Experimental Data and Model Extension , 2001 .

[220]  Jason E. Bara,et al.  Room-Temperature Ionic Liquid−Amine Solutions: Tunable Solvents for Efficient and Reversible Capture of CO2 , 2008 .

[221]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[222]  Il Moon,et al.  Current status and future projections of LNG demand and supplies: A global prospective , 2011 .

[223]  E. Maginn,et al.  Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. , 2008, Journal of the American Chemical Society.

[224]  S. Jeong,et al.  Equimolar Carbon Dioxide Absorption by Ether Functionalized Imidazolium Ionic Liquids , 2012 .

[225]  B Jastorff,et al.  Design of sustainable chemical products--the example of ionic liquids. , 2007, Chemical reviews.

[226]  Mark D. Bearden,et al.  Chemically selective gas sweetening without thermal-swing regeneration , 2011 .

[227]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[228]  Luís M. N. B. F. Santos,et al.  Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures. , 2009, The journal of physical chemistry. B.

[229]  A. Khanna,et al.  Evaluating the Interactions of Co2-Ionic Liquid Systems through Molecular Modeling , 2009 .

[230]  Biaohua Chen,et al.  Solubility of CO2 in Binary Mixtures of Room-Temperature Ionic Liquids at High Pressures , 2012 .

[231]  L. Øi Aspen HYSYS Simulation of CO2 Removal by Amine Absorption from a Gas Based Power Plant , 2007 .

[232]  A. Mehdizadeh,et al.  Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate , 2010 .

[233]  K. Yoo,et al.  Measurement of CO2 Solubility in Ionic Liquids: [BMP][Tf2N] and [BMP][MeSO4] by Measuring Bubble-Point Pressure , 2011 .

[234]  Joan F. Brennecke,et al.  High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems , 2001 .

[235]  Suojiang Zhang,et al.  Solubilities of Gases in 1,1,3,3-Tetramethylguanidium Lactate at Elevated Pressures , 2006 .

[236]  Jason E. Bara,et al.  Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes , 2009 .

[237]  Phillip K. Koech,et al.  Reversible zwitterionic liquids, the reaction of alkanol guanidines, alkanol amidines, and diamines with CO2 , 2010 .

[238]  Nicholas Gathergood,et al.  Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation , 2004 .

[239]  J. Brennecke,et al.  Improving carbon dioxide solubility in ionic liquids. , 2007, The journal of physical chemistry. B.