Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women.

Genome-wide association studies (GWAS) of lung cancer in Asian never-smoking women have previously identified six susceptibility loci associated with lung cancer risk. To further discover new susceptibility loci, we imputed data from four GWAS of Asian non-smoking female lung cancer (6877 cases and 6277 controls) using the 1000 Genomes Project (Phase 1 Release 3) data as the reference and genotyped additional samples (5878 cases and 7046 controls) for possible replication. In our meta-analysis, three new loci achieved genome-wide significance, marked by single nucleotide polymorphism (SNP) rs7741164 at 6p21.1 (per-allele odds ratio (OR) = 1.17; P = 5.8 × 10(-13)), rs72658409 at 9p21.3 (per-allele OR = 0.77; P = 1.41 × 10(-10)) and rs11610143 at 12q13.13 (per-allele OR = 0.89; P = 4.96 × 10(-9)). These findings identified new genetic susceptibility alleles for lung cancer in never-smoking women in Asia and merit follow-up to understand their biological underpinnings.

Hongbing Shen | Chien-Jen Chen | N. Rothman | S. Chanock | N. Chatterjee | J. Yokota | W. Pao | T. Kohno | M. Yeager | Zhaoming Wang | A. Hutchinson | Junwen Wang | M. Tucker | J. Fraumeni | W. Tan | Chen Wu | D. Lin | Zhibin Hu | Jiang Chang | G. Jin | Tangchun Wu | X. Shu | Y. Xiang | Charles C. Chung | W. Zheng | L. Burdett | W. Chow | A. Sihoe | S. Berndt | C. Kang | H. Hosgood | M. Kubo | Guoping Wu | K. Matsuo | W. Lim | Q. Cai | Y. Yatabe | T. Mitsudomi | Yi-long Wu | Yuh-Min Chen | V. Lee | Junjie Zhu | Y. Momozawa | C. Hsiung | Q. Lan | I. Chang | Minsun Song | S. Tsugane | G. Chang | Pan‐Chyr Yang | J. Dai | Hongxia Ma | J. Park | H. Jeon | Tsung-Ying Yang | W. Su | J. Choi | B. Ji | Jun Suk Kim | Yeul-Hong Kim | M. Shin | H. Kim | Yun-Chul Hong | C. Hsiao | I. Oh | Chong-Jen Yu | S. Kweon | H. Yoon | Kexin Chen | M. Landi | Hongyan Chen | D. Lu | N. Caporaso | M. Wong | Li Jin | P. Guan | Baosen Zhou | T. Shimazu | Y. Daigo | K. Shiraishi | M. Iwasaki | Li Liu | Huan Guo | B. Bassig | Wei Hu | B. Song | Sensen Cheng | K. Ashikawa | Robert Klein | Hong Zheng | Y. T. Kim | G. Jiang | T. Hida | A. Seow | Chien-Chung Lin | J. Ho | Charles Lawrence | F. Wei | Zhihua Yin | S. An | J. Sung | J. H. Kim | Y. Tsai | Wen-Chang Wang | Xingzhou He | Xuchao Zhang | Xueying Zhao | K. Park | S. Sung | Chung-Hsing Chen | Jun Xu | Chih-Liang Wang | Haixin Li | Zhenhong Zhao | Y. Choi | I. Park | P. Xu | Yao-Jen Li | Jihua Li | H. Kunitoh | Ying-Hsiang Chen | S. Li | K. Fei | W. Seow | Zhehai Wang | L. Chien | Shengchao A Li | Charles E. Lawrence | Huizhong Chen | P. Cui | Yangwu Ren | Xuelian Li | Yi-Song Chen | Chih-Yi Chen | Jie Liu | Jianjun Liu | Kathleen Wyatt | Yu‐Tang Gao | Yang Yang | Jinming Yu | J. C. Chan | Yu-Chun Su | Jiu-cun Wang | Young-chul Kim | Y. Jung | J. Su | Ming-Shyan Huang | Ying Chen | Kuan-Yu Chen | Fang‐Yu Tsai | Junjie Wu | Taiki Yamji | Yu-tang Gao | M. Kubo

[1]  Gonçalo R. Abecasis,et al.  Minimac2: Faster Genotype Imputation , 2015, Bioinform..

[2]  G. Abecasis,et al.  Genetic and population analysis minimac2: faster genotype imputation , 2015 .

[3]  Jianxin Shi,et al.  Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers. , 2014, Carcinogenesis.

[4]  D. Gudbjartsson,et al.  Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma , 2014, Human molecular genetics.

[5]  Thomas W. Mühleisen,et al.  Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. , 2013, Blood.

[6]  Paolo Vineis,et al.  Genome-wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia , 2013, Nature Genetics.

[7]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[8]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[9]  Fabian J Theis,et al.  Genome-wide association analyses identify 18 new loci associated with serum urate concentrations , 2012, Nature Genetics.

[10]  Hongbing Shen,et al.  Genetic variants at 6p21.1 and 7p15.3 are associated with risk of multiple cancers in Han Chinese. , 2012, American journal of human genetics.

[11]  Eurie L. Hong,et al.  Annotation of functional variation in personal genomes using RegulomeDB , 2012, Genome research.

[12]  Yang Zhao,et al.  Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls , 2012, Human molecular genetics.

[13]  Melissa Bondy,et al.  Genome-wide association study of glioma and meta-analysis , 2012, Human Genetics.

[14]  Yusuke Nakamura,et al.  A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population , 2012, Nature Genetics.

[15]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[16]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[17]  Jeffrey E. Lee,et al.  Genome-wide association study identifies three new melanoma susceptibility loci , 2011, Nature Genetics.

[18]  M. Spitz,et al.  Variants in inflammation genes are implicated in risk of lung cancer in never smokers exposed to second-hand smoke. , 2011, Cancer discovery.

[19]  Wen Tan,et al.  A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese , 2011, Nature Genetics.

[20]  Hongbing Shen,et al.  Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations , 2011, Nature Genetics.

[21]  C. Glass,et al.  Non-coding RNAs as regulators of gene expression and epigenetics. , 2011, Cardiovascular research.

[22]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[23]  Serafim Batzoglou,et al.  Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..

[24]  Yusuke Nakamura,et al.  Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations , 2010, Nature Genetics.

[25]  H. Morgenstern,et al.  In-Home Coal and Wood Use and Lung Cancer Risk: A Pooled Analysis of the International Lung Cancer Consortium , 2010, Environmental health perspectives.

[26]  Yusuke Nakamura,et al.  Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population , 2010, Nature Genetics.

[27]  E. Liu,et al.  A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci , 2010, Nature Genetics.

[28]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[29]  Ying Wang,et al.  A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. , 2009, American journal of human genetics.

[30]  Melissa Bondy,et al.  Genome-wide association study identifies five susceptibility loci for glioma , 2009, Nature Genetics.

[31]  J. Malvehy,et al.  Genome-wide association study identifies three loci associated with melanoma risk , 2009, Nature Genetics.

[32]  Alexander R. Pico,et al.  Variants in the CDKN2B and RTEL1 regions are associated with high grade glioma susceptibility , 2009, Nature Genetics.

[33]  D. Spector,et al.  Long noncoding RNAs: functional surprises from the RNA world. , 2009, Genes & development.

[34]  Xiaohui Xie,et al.  Identifying novel constrained elements by exploiting biased substitution patterns , 2009, Bioinform..

[35]  Erika Avila-Tang,et al.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies , 2008, PLoS medicine.

[36]  Paul Fearnhead,et al.  Bioinformatics Original Paper Sequenceldhot: Detecting Recombination Hotspots , 2022 .

[37]  Dana C Crawford,et al.  Evidence for substantial fine-scale variation in recombination rates across the human genome , 2004, Nature Genetics.

[38]  M. Stephens,et al.  Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. , 2003, Genetics.

[39]  Michael Thomas,et al.  MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer , 2003, Oncogene.

[40]  Jun Yokota,et al.  Molecular processes of chromosome 9p21 deletions in human cancers , 2003, Oncogene.

[41]  H. Wichmann,et al.  Risk factors for lung cancer among nonsmoking women , 2002, International journal of cancer.

[42]  Florence Demenais,et al.  Geographical variation in the penetrance of CDKN2A mutations for melanoma. , 2002, Journal of the National Cancer Institute.

[43]  B. Roe,et al.  Characterization of the human synaptogyrin gene family , 1998, Human Genetics.