Improvement of thermal properties of ultra-high Q silicon microdisk resonators

Silicon-on-insulator ultra-high Q resonators with improved thermal properties are reported. A thin Si pedestal layer between microdisk and oxide increases the thermal conductivity dramatically, while Q is preserved, enabling higher field intensities in nonlinear-optical applications.

[1]  S. Yegnanarayanan,et al.  Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. , 2007, Optics express.

[2]  Linjie Zhou,et al.  Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators. , 2006, Optics express.

[3]  Susumu Noda,et al.  Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities. , 2006, Optics express.

[4]  Oskar Painter,et al.  Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. , 2006, Optics express.

[5]  M. Lipson Guiding, modulating, and emitting light on Silicon-challenges and opportunities , 2005, Journal of Lightwave Technology.

[6]  Michal Lipson,et al.  Ultrafast all-optical modulation on a silicon chip. , 2005, Optics letters.

[7]  O. Painter,et al.  Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment. , 2005, Optics express.

[8]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[9]  Oskar Painter,et al.  Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. , 2005, Optics express.

[10]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[11]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[12]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[13]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[14]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[15]  K. Vahala Optical microcavities , 2003, Nature.