Spatial organisation of European eel (Anguilla anguilla L.) in a small catchment

Modelling governing patterns of European eel (Anguilla anguilla L.) distribution of four eel size classes ( 450 mm) in the Fremur basin (North-West France) was done using artificial neural network (ANN) techniques and ecological profiles. Our results demonstrate the high predictive power of the ANN models. Some macro and micro-scale factors, like distance from the sea, depth and flow velocity have the most significant influence in the models. Influence of distance from the sea appears to be very different from the spatial organisation usually described in river systems. In fact, the general tendencies of total eel densities according to distance from the sea showed that densities weakly increase upstream. Another outcome was the variations of habitat preference according to the eel size, even if this species is spread over practically every type of micro-habitat. Small eels were mainly found in shallow habitats with strong abundance of aquatic vegetation, whereas large eels tend to be found in intermediate to high depth with small to intermediate abundance of aquatic vegetation. Finally, we hypothesize that European eels change behaviour and microhabitat characteristic preference around a size of 300 mm.

[1]  C. Townsend,et al.  Riparian land use and accessibility to fishers influence size class composition and habitat use by longfin eels in a New Zealand river , 2002 .

[2]  A. Ibbotson,et al.  Colonisation of freshwater habitats by the European eel Anguilla anguilla , 2002 .

[3]  E. Feunteun Management and restoration of European eel population (Anguilla anguilla): An impossible bargain , 2002 .

[4]  S. Lek,et al.  Fish spatial distribution in the littoral zone of Lake Pareloup (France) during summer , 2001 .

[5]  C. Townsend,et al.  Microhabitat use by longfin eels in New Zealand streams with contrasting riparian vegetation , 2001 .

[6]  S. Lek,et al.  Is scuba sampling a relevant method to study fish microhabitat in lakes? Examples and comparisons for three European species , 2001 .

[7]  D. Pont,et al.  A probabilistic model characterizing fish assemblages of French rivers: a framework for environmental assessment , 2001 .

[8]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[9]  J. McCleave,et al.  Variation in Population and Life History Traits of the American Eel, Anguilla rostrata, in Four Rivers in Maine , 2000, Environmental Biology of Fishes.

[10]  D. Pont,et al.  Habitat occupancy patterns of juvenile fishes in a large lowland river : interactions with macrophytes , 2000 .

[11]  P. Laffaille,et al.  European eel (Anguilla anguilla): prediction of spawner escapement from continental population parameters , 2000 .

[12]  W. Dekker A Procrustean assessment of the European eel stock , 2000 .

[13]  N. Lamouroux,et al.  Fish habitat preferences in large streams of southern France , 1999 .

[14]  I. Dimopoulos,et al.  Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece) , 1999 .

[15]  Sovan Lek,et al.  Artificial neural networks as a tool in ecological modelling, an introduction , 1999 .

[16]  M. Boyce,et al.  Relating populations to habitats using resource selection functions. , 1999, Trends in ecology & evolution.

[17]  Duncan Painter,et al.  Macroinvertebrate distributions and the conservation value of aquatic Coleoptera, Mollusca and Odonata in the ditches of traditionally managed and grazing fen at Wicken Fen, UK , 1999 .

[18]  J. Lobón‐Cervià The decline of eel Anguilla anguilla (L.) in a river catchment of northern Spain 1986-1997. Further evidence for a critical status of eel in Iberian waters , 1999 .

[19]  A. Roncarati,et al.  Influence of stocking density of European eel (Anguilla anguilla, L.) elvers on sex differentiation and zootechnical performances , 1997 .

[20]  S. Parker,et al.  Selective Tidal Stream Transport by American Eels During Homing Movements and Estuarine Migration , 1997, Journal of the Marine Biological Association of the United Kingdom.

[21]  K. Oliveira Movements and Growth Rates of Yellow-Phase American Eels in the Annaquatucket River, Rhode Island , 1997 .

[22]  D. Pont,et al.  Multi-scale approach to species–habitat relationships: juvenile fish in a large river section , 1996 .

[23]  P. Angermeier,et al.  Distribution and Abundance of American Eels in Virginia Streams: Tests of Null Models across Spatial Scales , 1995 .

[24]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[25]  M. Edwards,et al.  The potential for computer-aided identification in biodiversity research. , 1995, Trends in ecology & evolution.

[26]  J. Lobón‐Cervià,et al.  Variations in the population dynamics of the European eel Anguilla anguilla (L.) along the course of a Cantabrian river , 1995 .

[27]  P. Cheng,et al.  Relative abundance, sex ratio and population structure of the Japanese eel Anguilla japonica in the Tanshui River system of northern Taiwan , 1995 .

[28]  H. Beecher,et al.  Predicting Microdistributions of Steelhead (Oncorhynchus mykiss) Parr from Depth and Velocity Preference Criteria: Test of an Assumption of the Instream Flow Incremental Methodology , 1993 .

[29]  Joel C. Trexler,et al.  Nontraditional Regression Analyses , 1993 .

[30]  B. Chisnall,et al.  Age and growth of longfinned eels (Anguilla dieffenbachii) in pastoral and forested streams in the Waikato River basin, and in two hydroelectric lakes in the North Island, New Zealand , 1993 .

[31]  J. Kalish,et al.  Age validation and movement of freshwater eels (Anguilla dieffenbachii and A. australis) in a New Zealand pastoral stream , 1993 .

[32]  I. Naismith,et al.  The distribution, density and growth of the European eel, Anguilla anguilla, in the freshwater catchment of the River Thames , 1993 .

[33]  G. Copp,et al.  An empirical model for predicting microhabitat of 0+ juvenile fishes in a lowland river catchment , 1992, Oecologia.

[34]  M. Rosenzweig,et al.  Habitat Selection and Population Interactions: The Search for Mechanism , 1991, The American Naturalist.

[35]  J. Lobón‐Cervià,et al.  Effects of eel (Anguilla anguilla L.) removals from selected sites of a stream on its subsequent densities , 1990, Hydrobiologia.

[36]  W. Odum,et al.  Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge , 1988, Oecologia.

[37]  G. J. Glova Fish density variations in the braided Ashley River, Canterbury, New Zealand , 1988 .

[38]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[39]  G. Helfman,et al.  Population Size and Home Range of American Eels in a Georgia Tidal Creek , 1985 .

[40]  B. Beltman,et al.  Distribution of macro‐invertebrates in a ditch in relation to the vegetation , 1984 .

[41]  D. J. Hall,et al.  An Experimental Test of the Effects of Predation Risk on Habitat Use in Fish , 1983 .

[42]  James R. Karr,et al.  Fish communities along environmental gradients in a system of tropical streams , 1983, Environmental Biology of Fishes.

[43]  R. Edwards,et al.  The macroinvertebrate fauna of the drainage channels of the Gwent Levels, South Wales , 1983 .

[44]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[45]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[46]  Mike R. Strub,et al.  A New Methodfor Estimating Population Size from Removal Data , 1978 .

[47]  M. Huet Profiles and Biology of Western European Streams as Related to Fish Management , 1959 .

[48]  J. Lefeuvre,et al.  Les peuplements piscicoles des marais littoraux endigués atlantiques : un patrimoine à gérer ? Le cas du marais de Bourgneuf-Machecoul (Loire-Atlantique, France) , 1999 .

[49]  P. Laffaille,et al.  Spatial distribution of an eel population (Anguilla anguilla L.) in a small coastal catchment of Northern Brittany (France). Consequences of hydraulic works. , 1998 .

[50]  I. Dimopoulos,et al.  Role of some environmental variables in trout abundance models using neural networks , 1996 .

[51]  T. Oberdorff,et al.  Feeding habits of fourteen european freshwater fish species , 1995 .

[52]  C. Lévêque L'habitat : être au bon endroit au bon moment ? , 1995 .

[53]  É. Feunteun,et al.  Étude de l'anguille en marais d'eau douce. Première analyse des probabilités de capture observées lors des inventaires par pêche électrique , 1994 .

[54]  F. Chancerel La répartition de l'Anguille en France , 1994 .

[55]  John D. Koehn,et al.  Seasonal and size-related variation in microhabitat use by a southern Victorian stream fish assemblage , 1994 .

[56]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[57]  G. Helfman,et al.  Ultrasonic Telemetry of American Eel Movements in a Tidal Creek , 1983 .