Origin of the universal roughness exponent of brittle fracture surfaces:stress-weighted percolation in the damage zone.

We suggest that the observed large-scale universal roughness of brittle fracture surfaces is due to the fracture propagation being a damage coalescence process described by a stress-weighted percolation phenomenon in a self-generated quadratic damage gradient. We use the quasistatic 2D fuse model as a paradigm of a mode I fracture model. We measure for this model, which exhibits a correlated percolation process, the correlation length exponent nu approximately 1.35 and conjecture it to be equal to that of classical percolation, 4/3. We then show that the roughness exponent in the 2D fuse model is zeta=2nu/(1+2nu)=8/11. This is in accordance with the numerical value zeta=0.75. Using the value for 3D percolation, nu=0.88, we predict the roughness exponent in the 3D fuse model to be zeta=0.64, in close agreement with the previously published value of 0.62+/-0.05. We furthermore predict zeta=4/5 for 3D brittle fractures, based on a recent calculation giving nu=2. This is in full accordance with the value zeta=0.80 found experimentally.