Oblivious Radix Sort: An Efficient Sorting Algorithm for Practical Secure Multi-party Computation

We propose a simple and efficient sorting algorithm for secure multiparty computation (MPC). The algorithm is designed to be efficient when the number of parties and the size of the underlying field are small. For a constant number of parties and a field with a constant size, the algorithm has O(n log n) communication complexity, which is asymptotically the same as the best previous algorithm but achieves O(1) round complexity, where n is the number of items. The algorithm is constructed with the help of a new technique called “shuffleand-reveal.” This technique can be seen as an analogue of the frequently used technique of “add random number and reveal.” The feasibility of our algorithm is demonstrated by an implementation on an MPC scheme based on Shamir’s secret-sharing scheme with three parties and corruption tolerance of 1. Our implementation sorts 1 million 32-bit word secret-shared values in 197 seconds.

[1]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[2]  Bingsheng Zhang,et al.  Generic Constant-Round Oblivious Sorting Algorithm for MPC , 2011, ProvSec.

[3]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[4]  Michael T. Goodrich,et al.  Randomized Shellsort: a simple oblivious sorting algorithm , 2009, SODA '10.

[5]  Kazuo Ohta,et al.  Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol , 2007, Public Key Cryptography.

[6]  Katsumi Takahashi,et al.  Practically Efficient Multi-party Sorting Protocols from Comparison Sort Algorithms , 2012, ICISC.

[7]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 2: Basic Applications , 2001 .

[8]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[9]  Jan Willemson,et al.  Round-Efficient Oblivious Database Manipulation , 2011, ISC.

[10]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[11]  Moti Yung,et al.  Threshold and Proactive Pseudo-Random Permutations , 2006, IACR Cryptol. ePrint Arch..

[12]  Kristján Valur Jónsson,et al.  Secure Multi-Party Sorting and Applications , 2011, IACR Cryptol. ePrint Arch..

[13]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[14]  Oded Goldreich,et al.  Foundations of Cryptography: Volume 2, Basic Applications , 2004 .

[15]  Jonathan Katz,et al.  Private Set Intersection: Are Garbled Circuits Better than Custom Protocols? , 2012, NDSS.

[16]  Kaoru Kurosawa,et al.  Optimum Secret Sharing Scheme Secure against Cheating , 1996, EUROCRYPT.

[17]  I. Damglurd Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation , 2006 .

[18]  Tal Rabin,et al.  Simplified VSS and fast-track multiparty computations with applications to threshold cryptography , 1998, PODC '98.

[19]  Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA , 1988, STOC.

[20]  Qiuliang Xu,et al.  Multiparty Computation for Modulo Reduction without Bit-Decomposition and A Generalization to Bit-Decomposition , 2010, IACR Cryptol. ePrint Arch..

[21]  Michael T. Goodrich,et al.  Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation , 2010, ICALP.

[22]  Dan Bogdanov,et al.  Sharemind: A Framework for Fast Privacy-Preserving Computations , 2008, ESORICS.

[23]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[24]  Xenofontas A. Dimitropoulos,et al.  SEPIA: Privacy-Preserving Aggregation of Multi-Domain Network Events and Statistics , 2010, USENIX Security Symposium.

[25]  Ivan Damgård,et al.  Secure Multiparty Computation Goes Live , 2009, Financial Cryptography.

[26]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Extended Abstract) , 1988, STOC.

[27]  Ivan Damgård,et al.  Perfectly Secure Oblivious RAM Without Random Oracles , 2011, IACR Cryptol. ePrint Arch..

[28]  Wenliang Du,et al.  Bureaucratic protocols for secure two-party sorting, selection, and permuting , 2010, ASIACCS '10.

[29]  Satoshi Obana,et al.  Almost Optimum Secret Sharing Schemes Secure Against Cheating for Arbitrary Secret Distribution , 2006, ASIACRYPT.

[30]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[31]  Benny Pinkas,et al.  Fairplay - Secure Two-Party Computation System , 2004, USENIX Security Symposium.