Higher-Order Modal Logics: Automation and Applications

These are the lecture notes of a tutorial on higher-order modal logics held at the 11th Reasoning Web Summer School. After defining the syntax and (possible worlds) semantics of some higher-order modal logics, we show that they can be embedded into classical higher-order logic by systematically lifting the types of propositions, making them depend on a new atomic type for possible worlds. This approach allows several well-established automated and interactive reasoning tools for classical higher-order logic to be applied also to modal higher-order logic problems. Moreover, also meta reasoning about the embedded modal logics becomes possible. Finally, we illustrate how our approach can be useful for reasoning with web logics and expressive ontologies, and we also sketch a possible solution for handling inconsistent data.

[1]  Christoph Benzmüller,et al.  Implementing and Evaluating Provers for First-order Modal Logics , 2012, ECAI.

[2]  Christoph Benzmüller,et al.  Church’s Type Theory , 2006 .

[3]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[4]  Cezary Kaliszyk,et al.  HOL(y)Hammer: Online ATP Service for HOL Light , 2013, Math. Comput. Sci..

[5]  Geoff Sutcliffe,et al.  Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure , 2010, J. Formaliz. Reason..

[6]  John McCarthy,et al.  Generality in artificial intelligence , 1987, Resonance.

[7]  Arthur Charguéraud,et al.  The Locally Nameless Representation , 2012, Journal of Automated Reasoning.

[8]  Chad E. Brown,et al.  Satallax: An Automatic Higher-Order Prover , 2012, IJCAR.

[9]  Lawrence C. Paulson,et al.  LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description) , 2008, IJCAR.

[10]  Bruno Woltzenlogel Paleo,et al.  Formalization, Mechanization and Automation of Gödel's Proof of God's Existence , 2013, ArXiv.

[11]  Bruno Woltzenlogel Paleo,et al.  Variants of Gödel’s Ontological Proof in a Natural Deduction Calculus , 2017, Stud Logica.

[12]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[13]  Lawrence C. Paulson,et al.  Extending Sledgehammer with SMT Solvers , 2011, Journal of Automated Reasoning.

[14]  John K. Slaney,et al.  Realistic Belief Revision , 1995, WOCFAI.

[15]  Jens Otten,et al.  The QMLTP Problem Library for First-Order Modal Logics , 2012, IJCAR.

[16]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[17]  W. Bledsoe,et al.  Automated Theorem Proving: After 25 Years , 1984 .

[18]  Petr Hájek,et al.  Gödel '96 Logical Foundations of Mathematics, Computer Science and Physics Kurt GÖdel's Legacy , 1996, Bulletin of Symbolic Logic.

[19]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[20]  Koji Tanaka,et al.  Three Schools of Paraconsistency , 2003 .

[21]  Karin Ackermann,et al.  Labelled Deductive Systems , 2016 .

[22]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[23]  Jens Otten MleanCoP: A Connection Prover for First-Order Modal Logic , 2014, IJCAR.

[24]  Newton C. A. da Costa,et al.  A semantical analysis of the calculi Cn , 1977, Notre Dame J. Formal Log..

[25]  Bruno Woltzenlogel Paleo,et al.  Automating Gödel's Ontological Proof of God's Existence with Higher-order Automated Theorem Provers , 2014, ECAI.

[26]  Christoph Benzmüller,et al.  HOL Based First-Order Modal Logic Provers , 2013, LPAR.

[27]  Christine Paulin-Mohring Introduction to the Calculus of Inductive Constructions , 2015 .

[28]  Daniel Gallin,et al.  Intensional and Higher-Order Modal Logic , 1975 .

[29]  Christoph Benzmüller,et al.  The curious inference of Boolos in MIZAR and OMEGA , 2007 .

[30]  Peter Baumgartner,et al.  Theorem Proving with Analytic Tableaux and Related Methods , 1996, Lecture Notes in Computer Science.

[31]  Arnon Avron,et al.  What is relevance logic? , 2014, Ann. Pure Appl. Log..

[32]  Cezary Kaliszyk,et al.  Learning-assisted theorem proving with millions of lemmas☆ , 2015, J. Symb. Comput..

[33]  Bruno Woltzenlogel Paleo,et al.  Gödel's God in Isabelle/HOL , 2013, Arch. Formal Proofs.

[34]  Geoff Sutcliffe,et al.  First Order Reasoning on a Large Ontology , 2007, ESARLT.

[35]  Varol Akman,et al.  Steps Toward Formalizing Context , 1996, AI Mag..

[36]  Lawrence C. Paulson,et al.  Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II , 2008 .

[37]  Jesse Alama,et al.  Premise Selection for Mathematics by Corpus Analysis and Kernel Methods , 2011, Journal of Automated Reasoning.

[38]  George Boolos,et al.  A curious inference , 1987, J. Philos. Log..

[39]  Alan Bundy,et al.  Reasoning with Context in the Semantic Web , 2012, J. Web Semant..

[40]  Fausto Giunchiglia,et al.  Multilanguage hierarchical logics (or: how we can do without modal logics) , 1994, CNKBS.

[41]  A. Hazen,et al.  On Gödel's ontological proof , 1998 .

[42]  Torben Braüner,et al.  First-order modal logic , 2007, Handbook of Modal Logic.

[43]  Luciano Serafini,et al.  Comparing formal theories of context in AI , 2004, Artif. Intell..

[44]  Peter B. Andrews,et al.  On Sets, Types, Fixed Points, and Checkerboards , 1996, TABLEAUX.

[45]  Matthias Klusch,et al.  Web Semantics: Science, Services and Agents on the World Wide Web , 2012 .

[46]  C. Anthony Anderson,et al.  Gödel's ontological proof revisited , 1996 .

[47]  Christoph Benzmüller,et al.  Verifying the Modal Logic Cube Is an Easy Task (For Higher-Order Automated Reasoners) , 2010, Verification, Induction, Termination Analysis.

[48]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[49]  Reinhard Muskens,et al.  Higher order modal logic , 2007, Handbook of Modal Logic.

[50]  Deepak Ramachandran,et al.  First-Orderized ResearchCyc : Expressivity and Efficiency in a Common-Sense Ontology , 2005 .

[51]  João Marcos Modality and Paraconsistency , 2005 .

[52]  G. Priest Paraconsistent Belief Revision , 2008 .

[53]  Adam Pease,et al.  Higher-order aspects and context in SUMO , 2012, J. Web Semant..

[54]  M. Fitting Types, Tableaus, and Gödel's God , 2002 .

[55]  Ian A. Mason,et al.  Metamathematics of Contexts , 1995, Fundam. Informaticae.

[56]  Bruno Woltzenlogel Paleo,et al.  Computer-Assisted Analysis of the Anderson–Hájek Ontological Controversy , 2017, Logica Universalis.

[57]  Graham Priest,et al.  Simplified semantics for basic relevant logics , 1992, J. Philos. Log..

[58]  Peter B. Andrews,et al.  AUTOMATING HIGHER-ORDER LOGIC , 1984 .

[59]  P. Kleingeld,et al.  The Stanford Encyclopedia of Philosophy , 2013 .

[60]  Philip Scott Practical lambing and lamb care, A. Eales, J. Small, C. Macaldowie (Eds.). Blackwell Publishing Ltd., Oxford (2004), 272, (soft), £24.99, ISBN: 1405115467 , 2005 .

[61]  Lawrence C. Paulson,et al.  Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.

[62]  Peter B. Andrews General models and extensionality , 1972, Journal of Symbolic Logic.

[63]  Dov M. Gabbay,et al.  Handbook of paraconsistency , 2007 .

[64]  Geoff Sutcliffe The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.

[65]  Frank Wolter,et al.  Handbook of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning) , 2006 .

[66]  S. Jaskowski Propositional calculus for contradictory deductive systems , 1969 .

[67]  Roman. Matuszewski,et al.  From insight to proof : Festschrift in honour of Andrzej Trybulec , 2007 .

[68]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[69]  John McCarthy,et al.  Notes on Formalizing Context , 1993, IJCAI.

[70]  Laurent Perrussel,et al.  Contextual Reasoning , 1998, ECAI.

[71]  Jordan Howard Sobel,et al.  Logic and Theism: Arguments for and against Beliefs in God , 2003 .