Asymptotic equivalence of fixed-size and varying-size determinantal point processes
暂无分享,去创建一个
[1] H. Daniels. Saddlepoint Approximations in Statistics , 1954 .
[2] O. Macchi. The coincidence approach to stochastic point processes , 1975, Advances in Applied Probability.
[3] H. Künsch. Gaussian Markov random fields , 1979 .
[4] Jun S. Liu,et al. Weighted finite population sampling to maximize entropy , 1994 .
[5] P. Spreij. Probability and Measure , 1996 .
[6] Александр Борисович Сошников,et al. Детерминантные случайные точечные поля@@@Determinantal random point fields , 2000 .
[7] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[8] A. Dasgupta. Asymptotic Theory of Statistics and Probability , 2008 .
[9] Luis Rademacher,et al. Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[10] R. Couillet,et al. Random Matrix Methods for Wireless Communications: Estimation , 2011 .
[11] Ben Taskar,et al. k-DPPs: Fixed-Size Determinantal Point Processes , 2011, ICML.
[12] Ben Taskar,et al. Determinantal Point Processes for Machine Learning , 2012, Found. Trends Mach. Learn..
[13] Richard Jozsa,et al. Symmetric polynomials in information theory: entropy and subentropy , 2014, ArXiv.
[14] S. Sra. Inequalities via symmetric polynomial majorization , 2015 .
[15] Hugo Touchette,et al. Equivalence and Nonequivalence of Ensembles: Thermodynamic, Macrostate, and Measure Levels , 2014, 1403.6608.
[16] Suvrit Sra,et al. Efficient Sampling for k-Determinantal Point Processes , 2015, AISTATS.
[17] Suvrit Sra,et al. Elementary Symmetric Polynomials for Optimal Experimental Design , 2017, NIPS.
[18] Michal Valko,et al. Zonotope Hit-and-run for Efficient Sampling from Projection DPPs , 2017, ICML.
[19] Pierre-Olivier Amblard,et al. Determinantal Point Processes for Coresets , 2018, J. Mach. Learn. Res..