Expertise for cars and birds recruits brain areas involved in face recognition

Expertise with unfamiliar objects (‘greebles’) recruits face-selective areas in the fusiform gyrus (FFA) and occipital lobe (OFA). Here we extend this finding to other homogeneous categories. Bird and car experts were tested with functional magnetic resonance imaging during tasks with faces, familiar objects, cars and birds. Homogeneous categories activated the FFA more than familiar objects. Moreover, the right FFA and OFA showed significant expertise effects. An independent behavioral test of expertise predicted relative activation in the right FFA for birds versus cars within each group. The results suggest that level of categorization and expertise, rather than superficial properties of objects, determine the specialization of the FFA.

[1]  T. Farmer,et al.  Problems of Dynamic Neurology. , 1965 .

[2]  R. Yin Looking at Upside-down Faces , 1969 .

[3]  B. Pillon,et al.  [Anatomoclinical study of a case of prosopagnosia]. , 1972, Revue neurologique (Paris).

[4]  G. V. Van Hoesen,et al.  Prosopagnosia , 1982, Neurology.

[5]  G. Assal,et al.  [Nonrecognition of familiar animals by a farmer. Zooagnosia or prosopagnosia for animals]. , 1984, Revue neurologique.

[6]  S. Carey,et al.  Why faces are and are not special: an effect of expertise. , 1986, Journal of experimental psychology. General.

[7]  G. Humphreys,et al.  Visual object processing in optic aphasia: a case of semantic access agnosia , 1987 .

[8]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[9]  J Sergent,et al.  Varieties of functional deficits in prosopagnosia. , 1992, Cerebral cortex.

[10]  E K Warrington,et al.  Prosopagnosia: A Face-Specific Disorder , 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[11]  M. Farah,et al.  Parts and Wholes in Face Recognition , 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[12]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  T. Allison,et al.  Face recognition in human extrastriate cortex. , 1994, Journal of neurophysiology.

[14]  R. Rosenthal,et al.  “Some Things You Learn Aren't So”: Cohen's Paradox, Asch's Paradigm, and the Interpretation of Interaction , 1995 .

[15]  Martha J. Farah,et al.  Face perception and within-category discrimination in prosopagnosia , 1995, Neuropsychologia.

[16]  M. Farah,et al.  The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms , 1995, Vision Research.

[17]  T. Allison,et al.  Face-sensitive regions in human extrastriate cortex studied by functional MRI. , 1995, Journal of neurophysiology.

[18]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[19]  T. Allison,et al.  Differential Sensitivity of Human Visual Cortex to Faces, Letterstrings, and Textures: A Functional Magnetic Resonance Imaging Study , 1996, The Journal of Neuroscience.

[20]  T. Allison,et al.  Face-Specific Processing in the Human Fusiform Gyrus , 1997, Journal of Cognitive Neuroscience.

[21]  Randall J. Frank,et al.  Explaining category-related effects in the retrieval of conceptual and lexical knowledge for concrete entities: operationalization and analysis of factors , 1997, Neuropsychologia.

[22]  G. Winocur,et al.  What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition , 1997, Journal of Cognitive Neuroscience.

[23]  M. Tarr,et al.  Levels of categorization in visual recognition studied using functional magnetic resonance imaging , 1997, Current Biology.

[24]  M. Tarr,et al.  Becoming a “Greeble” Expert: Exploring Mechanisms for Face Recognition , 1997, Vision Research.

[25]  M. J. Riddoch,et al.  Visual object processing in optic aphasia: a case of semantic access agnosia , 1987 .

[26]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[27]  Michael J. Tarr,et al.  The functionally defined "face area" is engaged by subordinate-level recognition , 1998 .

[28]  Martin Arguin,et al.  Semantic and Visual Determinants of Face Recognition in a Prosopagnosic Patient , 1998, Journal of Cognitive Neuroscience.

[29]  M. Tarr,et al.  Training ‘greeble’ experts: a framework for studying expert object recognition processes , 1998, Vision Research.

[30]  Anne-Catherine Bachoud-Lévi,et al.  Inversion superiority in visual agnosia may be common to a variety of orientation polarised objects besides faces , 1998, Vision Research.

[31]  N. Kanwisher,et al.  Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. , 1998, Journal of neurophysiology.

[32]  M. Tarr,et al.  Can Face Recognition Really be Dissociated from Object Recognition? , 1999, Journal of Cognitive Neuroscience.

[33]  N. Kanwisher,et al.  Brain Imaging , 2020, Encyclopedia of Behavioral Medicine.

[34]  P. Schyns,et al.  Blind to Object Changes: When Learning the Same Object at Different Levels of Categorization Modifies Its Perception , 1999 .

[35]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[36]  John C. Gore,et al.  ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects , 1999, NeuroImage.

[37]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[39]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.