The incompressibility of hot asymmetric nuclear matter

[1]  R. Sahu,et al.  Equation of state of hot asymmetric nuclear matter , 1992 .

[2]  L. Satpathy,et al.  Thermostatic properties of hot nuclear systems with a finite-range force , 1992 .

[3]  A. Faessler,et al.  Intermediate-energy heavy ion collisions with G matrix potentials and cross-sections , 1992 .

[4]  Bombaci,et al.  Asymmetric nuclear matter equation of state. , 1991, Physical review. C, Nuclear physics.

[5]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[6]  S. Yang,et al.  EQUATION OF STATE OF ASYMMETRIC NUCLEAR MATTER WITH GOGNY AND COULOMB INTERACTIONS , 1990 .

[7]  Jiang,et al.  Uncertainties in the two-nucleon potential and nuclear matter predictions. , 1990, Physical review. C, Nuclear physics.

[8]  E. Baron,et al.  The Effect of Iron Core Structure on Supernovae , 1990 .

[9]  Baldo,et al.  Momentum dependence of the nuclear mean field. , 1989, Physical review. C, Nuclear physics.

[10]  S. Samaddar,et al.  The role of asymmetry on critical and limiting temperature , 1989 .

[11]  C. Samanta,et al.  Incompressibility of asymmetric nuclear matter , 1989 .

[12]  M. Baldo,et al.  Nuclear matter equation of state with single particle correlations , 1988 .

[13]  R. Wiringa,et al.  Single-particle potential in dense nuclear matter. , 1988, Physical review. C, Nuclear physics.

[14]  A. Lejeune,et al.  Nuclear mean field with correlations at finite temperature , 1987 .

[15]  Greiner,et al.  Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions. , 1987, Physical review letters.

[16]  Bertsch,et al.  Heavy-ion collision theory with momentum-dependent interactions. , 1987, Physical review. C, Nuclear physics.

[17]  T. Kuo,et al.  Infinite order summation of particle-particle ring diagrams in a model-space approach for nuclear matter , 1987 .

[18]  J. Heyer,et al.  Summation of particle-particle and particle-hole ring diagrams in binding energy calculations and Lipkin models☆ , 1986 .

[19]  Haidenbauer,et al.  Modified separable representation of the Paris nucleon-nucleon potential in the 1S0 and 3P0 states. , 1985, Physical review. C, Nuclear physics.

[20]  S. Bruenn,et al.  Stellar core collapse - Numerical model and infall epoch , 1985 .

[21]  Baron,et al.  Type II supernovae in 12Mcirdot and 15Mcirdot stars: The equation of state and general relativity. , 1985, Physical review letters.

[22]  W. Stocker Two thermodynamical approaches for hot nuclear matter - compression properties, surface tension and critical temperature , 1984 .

[23]  D. Lamb,et al.  Physical properties of hot, dense matter: The bulk equilibrium approximation , 1981 .

[24]  M. Barranco,et al.  Thermodynamic properties of hot nucleonic matter , 1980 .

[25]  H. Bethe,et al.  Equation of state in the gravitational collapse of stars , 1979 .

[26]  C. Mahaux,et al.  LOW DENSITY EXPANSION OF THE NUCLEON - NUCLEUS OPTICAL MODEL POTENTIAL , 1972 .

[27]  C. Bloch,et al.  Un développement du potentiel de Gibbs d'un système quantique composé d'un grand nombre de particules III—La contribution des collisions binaires , 1959 .

[28]  C. Bloch,et al.  UN DÉVELOPPEMENT DU POTENTIEL DE GIBBS D'UN SYSTÈME COMPOSÉ D'UN GRAND NOMBRE DE PARTICULES: II , 1958 .

[29]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .

[30]  D. Sperber Some properties of hot nuclear matter and hot nuclei , 1992 .

[31]  H. Flocard,et al.  Nuclear matter and heavy ion collisions , 1989 .

[32]  B. Day ELEMENTS OF THE BRUECKNER--GOLDSTONE THEORY OF NUCLEAR MATTER. , 1967 .