Numerical analysis of dynamical systems

This article reviews the application of various notions from the theory of dynamical systems to the analysis of numerical approximation of initial value problems over long-time intervals. Standard error estimates comparing individual trajectories are of no direct use in this context since the error constant typically grows like the exponential of the time interval under consideration. Instead of comparing trajectories, the effect of discretization on various sets which are invariant under the evolution of the underlying differential equation is studied. Such invariant sets are crucial in determining long-time dynamics. The particular invariant sets which are studied are equilibrium points, together with their unstable manifolds and local phase portraits, periodic solutions, quasi-periodic solutions and strange attractors. Particular attention is paid to the development of a unified theory and to the development of an existence theory for invariant sets of the underlying differential equation which may be used directly to construct an analogous existence theory (and hence a simple approximation theory) for the numerical method.

[1]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[2]  Arieh Iserles,et al.  A unified approach to spurious solutions introduced by time discretization. Part I: basic theory , 1991 .

[3]  A. Iserles Stability and Dynamics of Numerical Methods for Nonlinear Ordinary Differential Equations , 1990 .

[4]  W. Watson Numerical analysis , 1969 .

[5]  Robert M Corless,et al.  Approximate and real trajectories for generic dynamical systems , 1995 .

[6]  G. R. Shubin,et al.  Multiple Solutions and Bifurcation of Finite Difference Approximations to Some Steady Problems of Fluid Dynamics , 1981 .

[7]  Hans G. Othmer,et al.  An analytical and numerical study of the bifurcations in a system of linearly-coupled oscillators , 1987 .

[8]  Andrew M. Stuart,et al.  Runge-Kutta methods for dissipative and gradient dynamical systems , 1994 .

[9]  D. Broomhead,et al.  The dynamics of numerics and the numerics of dynamics , 1992 .

[10]  Urs Kirchgraber,et al.  Multi-step methods are essentially one-step methods , 1986 .

[11]  John C. Butcher,et al.  A stability property of implicit Runge-Kutta methods , 1975 .

[12]  H. C. Yee,et al.  Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics☆ , 1991 .

[13]  Andrew M. Stuart,et al.  The essential stability of local error control for dynamical systems , 1995 .

[14]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[15]  Wolf-Jürgen Beyn,et al.  On invariant closed curves for one-step methods , 1987 .

[16]  Wolf-Jürgen Beyn,et al.  Stability and Multiplicity of Solutions to Discretizations of Nonlinear Ordinary Differential Equations , 1981 .

[17]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[18]  Stig Larsson,et al.  The behavior of finite element solutions of semilinear parabolic problems near stationary points , 1994 .

[19]  W. Rheinboldt Numerical analysis of parametrized nonlinear equations , 1986 .

[20]  P. Hartman Ordinary Differential Equations , 1965 .

[21]  George R. Sell,et al.  Perturbations of attractors of differential equations , 1991 .

[22]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[23]  Shui-Nee Chow,et al.  A Shadowing Lemma Approach to Global Error Analysis for Initial Value ODEs , 1994, SIAM J. Sci. Comput..

[24]  Stig Larsson,et al.  Shadows, chaos, and saddles , 1993 .

[25]  James A. Yorke,et al.  Rigorous verification of trajectories for the computer simulation of dynamical systems , 1991 .

[26]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[27]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[28]  Shui-Nee Chow,et al.  On the numerical computation of orbits of dynamical systems: The higher dimensional case , 1992, J. Complex..

[29]  Jack K. Hale,et al.  Lower semicontinuity of attractors of gradient systems and applications , 1989 .

[30]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[31]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[32]  J. Carr Applications of Centre Manifold Theory , 1981 .

[33]  Cr Stability of periodic solutions and solution schemes , 1988 .

[34]  J. M. Sanz-Serna,et al.  Equilibria of Runge-Kutta methods , 1990 .

[35]  Daniel Stoffer,et al.  General linear methods: connection to one step methods and invariant curves , 1993 .

[36]  W. Beyn,et al.  Center manifolds of dynamical systems under discretization , 1987 .

[37]  A. Newell Finite Amplitude Instabilities of Partial Difference Equations , 1977 .

[38]  A. Debussche,et al.  On the discretization of a partial differential equation in the neighborhood of a periodic orbit , 1993 .

[39]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[40]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[41]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[42]  Endre Süli,et al.  Upper semicontinuity of attractors for linear multistep methods approximating sectorial evolution equations , 1995 .

[43]  O. Ladyzhenskaya,et al.  Attractors for Semigroups and Evolution Equations , 1991 .

[44]  E. Titi Un critére pour l'approximation des solutions périodiques des équations de Navier-Stokes , 1991 .

[45]  What do multistep methods approximate? , 1988 .

[46]  Set convergence for discretizations of the attractor , 1996 .

[47]  H. Mittelmann,et al.  Numerical methods for bifurcation problems : proceedings of the conference at the University of Dortmund, August 22-26, 1983 , 1984 .

[48]  Andrew M. Stuart,et al.  Nonlinear Instability in Dissipative Finite Difference Schemes , 1989, SIAM Rev..

[49]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[50]  G. Dahlquist Error analysis for a class of methods for stiff non-linear initial value problems , 1976 .

[51]  Germund Dahlquist,et al.  G-stability is equivalent toA-stability , 1978 .

[52]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[53]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[54]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[55]  Andrew M. Stuart Linear Instability Implies Spurious Periodic Solutions , 1989 .

[56]  Andrew M. Stuart,et al.  Model Problems in Numerical Stability Theory for Initial Value Problems , 1994, SIAM Rev..

[57]  Aspects of backward error analysis of numerical ODEs , 1993 .

[58]  A. Spence,et al.  Continuation and Bifurcations: Numerical Techniques and Applications , 1990 .

[59]  F. Brezzi,et al.  “Real” and “Ghost” Bifurcation Dynamics in Difference Schemes for ODEs , 1984 .

[60]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[61]  J. Rappaz,et al.  On numerical approximation in bifurcation theory , 1990 .

[62]  V. A. Pliss Nonlocal Problems of the Theory of Oscillations , 1966 .

[63]  Celso Grebogi,et al.  Numerical orbits of chaotic processes represent true orbits , 1988 .

[64]  C. M. Place,et al.  An Introduction to Dynamical Systems , 1990 .

[65]  W. Beyn On the Numerical Approximation of Phase Portraits Near Stationary Points , 1987 .

[66]  T. Eirola Two concepts for numerical periodic solutions of ODE's , 1989, Conference on Numerical Ordinary Differential Equations.

[67]  P. Kloeden,et al.  Stable attracting sets in dynamical systems and in their one-step discretizations , 1986 .

[68]  Periodic solutions of finite difference equations , 1977 .

[69]  François Alouges,et al.  On the qualitative behavior of the orbits of a parabolic partial differential equation and its discretization in the neighborhood of a hyperbolic fixed point , 1991 .

[70]  T. Eirola Invariant curves of one-step methods , 1988 .

[71]  T. Murdoch,et al.  Convergent and spurious solutions of nonlinear elliptic equations , 1992 .

[72]  W. Beyn Numerical methods for dynamical systems , 1991 .

[73]  Andrew M. Stuart,et al.  The Numerical Computation of Heteroclinic Connections in Systems of Gradient Partial Differential Equations , 1993, SIAM J. Appl. Math..

[74]  H. T. Doan Invariant curves for numerical methods , 1985 .

[75]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[76]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[77]  M. van Veldhuizen,et al.  Convergence results for invariant curve algorithms , 1988 .

[78]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[79]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[80]  Robert M. Corless,et al.  Rationale for guaranteed ODE defect control , 1991 .

[81]  S. Chow,et al.  The Accuracy of Numerically Computed Orbits of Dynamical Systems in Rk , 1990 .

[82]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[83]  M. Medved' Fundamentals of dynamical systems and bifurcation theory , 1992 .

[84]  Andrew M. Stuart,et al.  Approximation of dissipative partial differential equations over long time intervals , 1994 .

[85]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[86]  B. Nicolaenko,et al.  Inertial sets for dissipative evolution equations , 1990 .

[87]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[88]  Celso Grebogi,et al.  Do numerical orbits of chaotic dynamical processes represent true orbits? , 1987, J. Complex..

[89]  G. Sell,et al.  Inertial manifolds for reaction diffusion equations in higher space dimensions , 1988 .

[90]  Stig Larsson,et al.  The long-time behavior of finite-element approximations of solutions of semilinear parabolic problems , 1989 .

[91]  Robert D. Russell,et al.  Numerical Calculation of Invariant Tori , 1991, SIAM J. Sci. Comput..

[92]  Michael S. Jolly,et al.  INTEGRAL MANIFOLDS AND INERTIAL MANIFOLDS FOR DISSIPATIVE PARTIAL DIFFERENTIAL EQUATIONS: (Applied Mathematical Sciences 70) , 1990 .

[93]  H. C. Yee,et al.  On spurious asymptotic numerical solutions of explicit Runge-Kutta methods , 1992 .

[94]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[95]  K. Burrage,et al.  Stability Criteria for Implicit Runge–Kutta Methods , 1979 .

[96]  Jack K. Hale,et al.  Upper semicontinuity of attractors for approximations of semigroups and partial differential equations , 1988 .

[97]  A. Stuart,et al.  A note on uniform in time error estimates for approximations to reaction-diffusion equations , 1992 .

[98]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .

[99]  J. Ghidaglia,et al.  Time-discretization and inertial manifolds , 1989 .

[100]  Peter E. Kloeden,et al.  A note on multistep methods and attracting sets of dynamical systems , 1989 .

[101]  Robert M. Corless,et al.  Defect-controlled numerical methods and shadowing for chaotic differential equations , 1992 .

[102]  Peter E Kloeden,et al.  Chaotic numerics : an International Workshop on the Approximation and Computation of Complicated Dynamical Behavior, July 12-16, 1993, Deakin University, Geelong, Australia , 1994 .

[103]  A. R. Humphries Spurious solutions of numerical methods for initial value problems , 1993 .