GEAR SPALL WIDTH ESTIMATION USING MAXIMUM KURTOSIS PROPERTY

Abstract This paper deals with diagnosis and monitoring of gears. Classic methods aim to detect faults in early stage. In this work we propose a method which enables us not just to detect a spall but also its width in order to determine the remaining life of the defective element. This method is based on higher order statistic (HOS) to identify the mechanical structure. We research the optimal filter which corresponds to the transmission path. It is supposed an ARMA (p, q) non minimal phase filter. We identified it by using maximum kurtosis property supposed to be adapted to the impulsive nature of the gear tooth spall effect. The experimental results that will be presented validate the performance of these filtering techniques in detecting spalls in gears.

[1]  J. Lacoume,et al.  Statistiques d'ordre supérieur pour le traitement du signal , 1997 .

[2]  Robert B. Randall,et al.  Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter , 2007 .

[3]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[4]  Frédéric Bonnardot,et al.  Comparaison entre les analyses angulaire et temporelle des signaux vibratoires de machines tournantes : étude du concept de cyclostationnarité floue , 2004 .

[5]  Mouad Boumahdi,et al.  Blind identification using the kurtosis with applications to field data , 1996, Signal Process..

[6]  Cecile Capdessus Aide au diagnostic des machines tournantes par traitement du signal. (Improvement of rotating machinery condition monitoring using signal processing techniques) , 1992 .

[7]  J. C. Chow On estimating the orders of an autoregressive moving-average process with uncertain observations , 1972 .

[8]  F. Guillet,et al.  USE OF THE MOVING CEPSTRUM INTEGRAL TO DETECT AND LOCALISE TOOTH SPALLS IN GEARS , 2001 .

[9]  G. Giannakis On the identifiability of non-Gaussian ARMA models using cumulants , 1990 .

[10]  J. Antoni Cyclic spectral analysis in practice , 2007 .

[11]  G.B. Giannakis,et al.  Cumulant-based order determination of non-Gaussian ARMA models , 1990, IEEE Trans. Acoust. Speech Signal Process..