Reverse Top-k Geo-Social Keyword Queries in Road Networks

Identifying prospective customers is an important aspect of marketing research. In this paper, we provide support for a new type of query, the Reverse Top-k Geo-Social Keyword (RkGSK) query. This query takes into account spatial, textual, and social information, and finds prospective customers for geotagged objects. As an example, a restaurant manager might apply the query to find prospective customers. To address this, we propose a hybrid index, the GIM-tree, which indexes locations, keywords, and social information of geo-tagged users and objects, and then, using the GIM-tree, we present efficient RkGSK query processing algorithms that exploit several pruning strategies. The effectiveness of RkGSK retrieval is characterized via a case study, and extensive experiments using real datasets offer insight into the efficiency of the proposed index and algorithms.

[1]  Christian S. Jensen,et al.  Spatial Keyword Querying , 2012, ER.

[2]  João B. Rocha-Junior,et al.  Top-k spatial keyword queries on road networks , 2012, EDBT '12.

[3]  JUSTIN ZOBEL,et al.  Inverted files for text search engines , 2006, CSUR.

[4]  Christian S. Jensen,et al.  Spatial Keyword Query Processing: An Experimental Evaluation , 2013, Proc. VLDB Endow..

[5]  Ken C. K. Lee,et al.  Ranked Reverse Nearest Neighbor Search , 2008, IEEE Transactions on Knowledge and Data Engineering.

[6]  S. Muthukrishnan,et al.  Influence sets based on reverse nearest neighbor queries , 2000, SIGMOD '00.

[7]  Gang Chen,et al.  Efficient Reverse Top-k Boolean Spatial Keyword Queries on Road Networks , 2015, IEEE Transactions on Knowledge and Data Engineering.

[8]  Christos Doulkeridis,et al.  Branch-and-bound algorithm for reverse top-k queries , 2013, SIGMOD '13.

[9]  Dimitris Papadias,et al.  Geo-Social Ranking: functions and query processing , 2015, The VLDB Journal.

[10]  Barry Smyth,et al.  Using twitter to recommend real-time topical news , 2009, RecSys '09.

[11]  Hua Lu,et al.  Finding top-k local users in geo-tagged social media data , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[12]  Jian Pei,et al.  Finding the minimum spatial keyword cover , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[13]  Kian-Lee Tan,et al.  Temporal Spatial-Keyword Top-k publish/subscribe , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[14]  Gang Chen,et al.  Efficient Collective Spatial Keyword Query Processing on Road Networks , 2016, IEEE Transactions on Intelligent Transportation Systems.

[15]  Stavros Papadopoulos,et al.  A General Framework for Geo-Social Query Processing , 2013, Proc. VLDB Endow..

[16]  Chih-Ya Shen,et al.  On socio-spatial group query for location-based social networks , 2012, KDD.

[17]  Isabell M. Welpe,et al.  Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment , 2010, ICWSM.

[18]  Christian S. Jensen,et al.  Querying Geo-Textual Data: Spatial Keyword Queries and Beyond , 2016, SIGMOD Conference.

[19]  Beng Chin Ooi,et al.  Collective spatial keyword querying , 2011, SIGMOD '11.

[20]  Yuan Tian,et al.  ROAD: A New Spatial Object Search Framework for Road Networks , 2012, IEEE Transactions on Knowledge and Data Engineering.

[21]  Ioannis Konstantinou,et al.  MoDisSENSE: A Distributed Spatio-Temporal and Textual Processing Platform for Social Networking Services , 2015, SIGMOD Conference.

[22]  Yufei Tao,et al.  Reverse nearest neighbors in large graphs , 2005, 21st International Conference on Data Engineering (ICDE'05).

[23]  Jiaheng Lu,et al.  Reverse spatial and textual k nearest neighbor search , 2011, SIGMOD '11.

[24]  J. Shane Culpepper,et al.  Maximizing Bichromatic Reverse Spatial and Textual k Nearest Neighbor Queries , 2016, Proc. VLDB Endow..

[25]  Yufei Tao,et al.  Reverse kNN Search in Arbitrary Dimensionality , 2004, VLDB.

[26]  Nikos Mamoulis,et al.  Density-based place clustering in geo-social networks , 2014, SIGMOD Conference.

[27]  Seung-won Hwang,et al.  Processing and Optimizing Main Memory Spatial-Keyword Queries , 2015, Proc. VLDB Endow..

[28]  Xuemin Lin,et al.  Inverted Linear Quadtree: Efficient Top K Spatial Keyword Search , 2016, IEEE Transactions on Knowledge and Data Engineering.

[29]  Kyriakos Mouratidis,et al.  Joint Search by Social and Spatial Proximity , 2015, IEEE Transactions on Knowledge and Data Engineering.

[30]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[31]  Jianliang Xu,et al.  Answering why-not spatial keyword top-k queries via keyword adaption , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[32]  Dimitris Papadias,et al.  Geo-Social Keyword Search , 2015, SSTD.

[33]  Yunjun Gao,et al.  Visible Reverse k-Nearest Neighbor Query Processing in Spatial Databases , 2009, IEEE Transactions on Knowledge and Data Engineering.

[34]  Dimitrios Gunopulos,et al.  Identifying prospective customers , 2000, KDD '00.

[35]  Kian-Lee Tan,et al.  G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks , 2015, IEEE Transactions on Knowledge and Data Engineering.