Parameter Optimization Method for Identifying the Optimal Nonlinear Parameters of a Miniature Transducer with a Metal Membrane

This study proposes a parameter optimization method for identifying the optimal nonlinear parameters of a miniature transducer with a metal membrane. Specifically, a nonlinear lumped parameter model (LPM) of a miniature transducer that accounts for predicted displacement in a manner that is consistent with the displacement measured by a high-precision capacitance micro-displacement sensor is proposed. To avoid application of the proposed optimization method to an ill-posed problem, this paper proposes a constrained equation that is derived from the relationships of nonlinear parameters. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is used to minimize the objective function in order to obtain an appropriate solution from the proposed nonlinear LPM. The numerical simulation results and a discussion of the experiments are presented. The numerical simulation verification demonstrated that the presented method can estimate the suitable nonlinear parameters for the displacement with errors. With regard to empirical verification, the empirical investigations showed that the proposed method could accurately assess the nonlinear parameters of a miniature transducer with a metal membrane.

[1]  Cornelis H. Slump,et al.  Theoretical and Experimental Comparison of Three Methods for Compensation of Electrodynamic Transducer Nonlinearity , 1998 .

[2]  Wolfgang Klippel,et al.  Dynamic Measurement and Interpretation of the Nonlinear Parameters of Electrodynamic Loudspeakers , 1990 .

[3]  David Clark Precision Measurement of Loudspeaker Parameters , 1997 .

[4]  W. Moon,et al.  Electrode configuration method with surface profile effect in a contact-type area-varying capacitive displacement sensor , 2013 .

[5]  Morten Knudsen Loudspeaker Modelling and Parameter Estimation , 1996 .

[6]  Andrea Montanari,et al.  A mean field view of the landscape of two-layer neural networks , 2018, Proceedings of the National Academy of Sciences.

[7]  Xiangdong Chen,et al.  Novel Quartz Crystal Capacitive Sensor for Micro Displacement Detection , 2012, IEEE Sensors Journal.

[8]  Remberto Gomez-Meda Measurement of the Thiele-Small Parameters for a Given Loudspeaker, Without Using a Box , 1991 .

[9]  Martin Rune Andersen Compensation on Nonlinearities in Transducers , 2005 .

[10]  Steve Mowry Simplified Simulation Methods for Nonlinear Loudspeaker Parameters , 2007 .

[11]  J. Xia,et al.  Analysis and prediction of loudspeaker large-signal symptoms , 2013 .

[12]  Aryan Mokhtari,et al.  RES: Regularized Stochastic BFGS Algorithm , 2014, IEEE Transactions on Signal Processing.

[13]  Christopher J. Struck ZFIT: A MATLAB Tool for Thiele-Small Parameter Fitting and Optimization , 2010 .

[14]  Ryan J. Mihelich Loudspeaker Nonlinear Parameter Estimation: An Optimization Method , 2001 .

[15]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[16]  Per Rubak,et al.  Online identification of linear loudspeakers parameters , 2007 .

[17]  Wolfgang Klippel,et al.  Tutorial: Loudspeaker Nonlinearities-Causes, Parameters, Symptoms , 2006 .

[18]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[19]  R. Ottoboni,et al.  A novel, cost-effective method for loudspeakers parameters measurement under non-linear conditions , 2008, 2008 IEEE AUTOTESTCON.

[20]  Soham De,et al.  Convergence Guarantees for RMSProp and ADAM in Non-Convex Optimization and an Empirical Comparison to Nesterov Acceleration , 2018, 1807.06766.