Non-Separable and Planar Graphs.

Introduction. In this paper the structure of graphs is studied by purely combinatorial methods. The concepts of rank and nullity are fundamental. The first part is devoted to a general study of non-separable graphs. Conditions that a graph be non-separable are given ; the decomposition of a separable graph into its non-separable parts is studied; by means of theorems on circuits of graphs, a method for the construction of non-separable graphs is found, which is useful in proving theorems on such graphs by mathematical induction. In the second part, a dual of a graph is defined by combinatorial means, and the paper ends with the theorem that a necessary and sufficient condition that a graph be planar is that it have a dual. The results of this paper are fundamental in papers by the author on Congruent graphs and the connectivity of graphs^ and on The coloring of graphs. X