Mathematical Modeling of Textures: Application to Color Image Decomposition with a Projected Gradient Algorithm

In this paper, we are interested in texture modeling with functional analysis spaces. We focus on the case of color image processing, and in particular color image decomposition. The problem of image decomposition consists in splitting an original image f into two components u and v. u should contain the geometric information of the original image, while v should be made of the oscillating patterns of f, such as textures. We propose here a scheme based on a projected gradient algorithm to compute the solution of various decomposition models for color images or vector-valued images. We provide a direct convergence proof of the scheme, and we give some analysis on color texture modeling.

[1]  Luminita A. Vese,et al.  Modeling Oscillatory Components with The Homogeneous Spaces BM -α and W -α,p* , 2011 .

[2]  Jérôme Gilles,et al.  Noisy Image Decomposition: A New Structure, Texture and Noise Model Based on Local Adaptivity , 2007, Journal of Mathematical Imaging and Vision.

[3]  Tony F. Chan,et al.  Image processing and analysis - variational, PDE, wavelet, and stochastic methods , 2005 .

[4]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[5]  Luminita A. Vese,et al.  Image Decomposition Using Total Variation and div(BMO) , 2005, Multiscale Model. Simul..

[6]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[7]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[8]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[9]  Wotao Yin,et al.  A comparison of three total variation based texture extraction models , 2007, J. Vis. Commun. Image Represent..

[10]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[11]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[12]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[13]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[14]  J. Aujol,et al.  Some algorithms for total variation based image restoration , 2008 .

[15]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[16]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[17]  V. Caselles,et al.  Parabolic Quasilinear Equations Min-imizing Linear Growth Functionals , 2004 .

[18]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[19]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[20]  Stephen J. Wright,et al.  Duality-based algorithms for total-variation-regularized image restoration , 2010, Comput. Optim. Appl..

[21]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[22]  Tony F. Chan,et al.  Total Variation Denoising and Enhancement of Color Images Based on the CB and HSV Color Models , 2001, J. Vis. Commun. Image Represent..

[23]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[24]  A. Hero,et al.  A Fast Spectral Method for Active 3D Shape Reconstruction , 2004 .

[25]  J. Darbon Total variation minimization with L/sup 1/ data fidelity as a contrast invariant filter , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[26]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[27]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[28]  G. Aubert,et al.  Modeling Very Oscillating Signals. Application to Image Processing , 2005 .

[29]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[30]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[31]  Jean-François Aujol,et al.  Color image decomposition and restoration , 2006, J. Vis. Commun. Image Represent..

[32]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[33]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[34]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[35]  Jing Yuan,et al.  Convex Hodge Decomposition and Regularization of Image Flows , 2009, Journal of Mathematical Imaging and Vision.

[36]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[37]  A. Bermúdez,et al.  Duality methods for solving variational inequalities , 1981 .

[38]  Sedi-Sap CEA-Saclay MONOTONE OPERATOR SPLITTING FOR OPTIMIZATION PROBLEMS IN SPARSE RECOVERY , 2009 .

[39]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[40]  Jonathan Eckstein,et al.  The Lions-Mercier splitting algorithm and the alternating direction method are instances of the proximal point algorithm , 1988 .

[41]  Antonin Chambolle,et al.  Some Variations on Total Variation--Based Image Smoothing , 2009 .

[42]  L. Lieu,et al.  Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces , 2008 .

[43]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[44]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[45]  I. Daubechiesa,et al.  Variational image restoration by means of wavelets : Simultaneous decomposition , deblurring , and denoising , 2005 .

[46]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[47]  Michael K. Ng,et al.  On Semismooth Newton’s Methods for Total Variation Minimization , 2007, Journal of Mathematical Imaging and Vision.

[48]  William K. Allard,et al.  Total Variation Regularization for Image Denoising, II. Examples , 2008, SIAM J. Imaging Sci..

[49]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[50]  B. Julesz,et al.  Texton gradients: The texton theory revisited , 2004, Biological Cybernetics.

[51]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[52]  Stanley Osher,et al.  Color Texture Modeling and Color Image Decomposition in a Variational-PDE Approach , 2006, 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[53]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[54]  Raymond H. Chan,et al.  The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration , 2007, IEEE Transactions on Image Processing.

[55]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[56]  Guy Gilboa,et al.  Constrained and SNR-Based Solutions for TV-Hilbert Space Image Denoising , 2006, Journal of Mathematical Imaging and Vision.

[57]  Nikos Paragios,et al.  Variational, Geometric, and Level Set Methods in Computer Vision, Third International Workshop, VLSM 2005, Beijing, China, October 16, 2005, Proceedings , 2005, VLSM.

[58]  A. Haddad Méthodes variationnelles en traitement d'image , 2005 .

[59]  Tony F. Chan,et al.  Combining geometrical and textured information to perform image classification , 2006, J. Vis. Commun. Image Represent..

[60]  Wotao Yin,et al.  Image Cartoon-Texture Decomposition and Feature Selection Using the Total Variation Regularized L1 Functional , 2005, VLSM.

[61]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[62]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[63]  Yann Gousseau,et al.  The TVL1 Model: A Geometric Point of View , 2009, Multiscale Model. Simul..

[64]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[65]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[66]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[67]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[68]  P. G. Ciarlet,et al.  Introduction a l'analyse numerique matricielle et a l'optimisation , 1984 .

[69]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[70]  J. Craggs Applied Mathematical Sciences , 1973 .

[71]  T. Chan,et al.  Fast dual minimization of the vectorial total variation norm and applications to color image processing , 2008 .

[72]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[73]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[74]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[75]  Robert D. Nowak,et al.  Majorization–Minimization Algorithms for Wavelet-Based Image Restoration , 2007, IEEE Transactions on Image Processing.

[76]  Wotao Yin,et al.  Second-order Cone Programming Methods for Total Variation-Based Image Restoration , 2005, SIAM J. Sci. Comput..

[77]  Mohamed-Jalal Fadili,et al.  Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients , 2008, Journal of Mathematical Imaging and Vision.

[78]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[79]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .