Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
暂无分享,去创建一个
Paolo Bonato | Gloria Vergara-Diaz | Yuanfang Guan | N. M. Rad | Jitendra Jonnagaddala | Maria K. Jaakkola | Laura L. Elo | Larsson Omberg | Elias Chaibub Neto | Ray Dorsey | Dimitri Perrin | Marlena Duda | Enrico Glaab | Riku Klén | Jean-Francois Daneault | Fatemeh Noushin Golabchi | Nastaran Mohammadian Rad | Stefano Sapienza | Patrick Schwab | Christian McDaniel | Federico Parisi | Bálint Ármin Pataki | Phil Snyder | Yuanjia Wang | Aipeng Chen | Gianluca Costante | Ethan Goan | Solveig K. Sieberts | Lara M. Mangravite | Peter Banda | Yasin Görmez | Mikko S. Venäläinen | Zafer Aydın | Dimitri Perrin | Y. Guan | L. Elo | P. Bonato | J. Jonnagaddala | L. Mangravite | L. Omberg | E. Glaab | E. C. Neto | F. N. Golabchi | S. Sieberts | Yuanjia Wang | J. Daneault | Phil Snyder | Y. Chae | R. Klén | M. Duda | M. Venäläinen | Ethan Goan | R. Dorsey | Z. Aydın | C. McDaniel | P. Schwab | Jennifer Schaff | Ming Sun | Udi Rubin | Yooree Chae | Carlos Espino | Dongmei Li | Erin Rainaldi | Nikolai Shokhirev | Yuqian Zhang | Daniela Brunner | Peter Banda | Yasin Görmez | B. Pataki | G. Vergara-Diaz | Stefano Sapienza | G. Costante | E. Rainaldi | D. Brunner | Dongmei Li | Yuqian Zhang | Aipeng Chen | Jennifer Schaff | Ming Sun | F. Parisi | U. Rubin | C. Espino | N. Shokhirev | Yooree Chae | Federico Parisi | Gianluca Costante | Udi Rubin | Yasin Görmez
[1] Arno Klein,et al. Personalized Hypothesis Tests for Detecting Medication Response in Parkinson Disease Patients Using iPhone Sensor Data , 2016, PSB.
[2] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[3] Ahmad Ihsan Mohd Yassin,et al. Statistical analysis of parkinson disease gait classification using Artificial Neural Network , 2011, 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT).
[4] Tjerk P. Straatsma,et al. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..
[5] Nir Giladi,et al. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson's disease , 2003, European journal of neurology.
[6] M. Muenter,et al. Frequency of levodopa‐related dyskinesias and motor fluctuations as estimated from the cumulative literature , 2001, Movement disorders : official journal of the Movement Disorder Society.
[7] Suchi Saria,et al. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score , 2018, JAMA neurology.
[8] D. Jennings,et al. The natural history of the syndrome of primary progressive freezing gait. , 2002, Archives of neurology.
[9] Juan Carlos Fernández,et al. Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms , 2014, Ann. Oper. Res..
[10] Max Kuhn,et al. Building Predictive Models in R Using the caret Package , 2008 .
[11] R. Fitzpatrick,et al. The PDQ-8: Development and validation of a short-form parkinson's disease questionnaire , 1997 .
[12] S. Friend,et al. The mPower study, Parkinson disease mobile data collected using ResearchKit , 2016, Scientific Data.
[13] Facundo Mémoli,et al. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.
[14] Anirvan Ghosh,et al. Evaluation of smartphone‐based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial , 2018, Movement disorders : official journal of the Movement Disorder Society.
[15] Mark Goadrich,et al. The relationship between Precision-Recall and ROC curves , 2006, ICML.
[16] Andrew Zisserman,et al. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.
[17] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[18] Andreas W. Kempa-Liehr,et al. Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A Python package) , 2018, Neurocomputing.
[19] P. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .
[20] Joan Cabestany,et al. Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit , 2018, Knowl. Based Syst..
[21] Larsson Omberg,et al. Learning Disease vs Participant Signatures: a permutation test approach to detect identity confounding in machine learning diagnostic applications , 2017 .
[22] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[23] R. Califf,et al. Real-World Evidence - What Is It and What Can It Tell Us? , 2016, The New England journal of medicine.
[24] Nir Giladi,et al. Relationship between freezing of gait (FOG) and other features of Parkinson’s: FOG is not correlated with bradykinesia , 2003, Journal of Clinical Neuroscience.
[25] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[26] R. Norel,et al. The self-assessment trap: can we all be better than average? , 2011, Molecular systems biology.
[27] Witold R. Rudnicki,et al. Feature Selection with the Boruta Package , 2010 .
[28] J. Jankovic,et al. Movement Disorder Society‐sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS‐UPDRS): Scale presentation and clinimetric testing results , 2008, Movement disorders : official journal of the Movement Disorder Society.
[29] Trevor F. Cox,et al. Multidimensional Scaling, Second Edition , 2000 .
[30] Christopher. Simons,et al. Machine learning with Python , 2017 .