Singular foliations for M-theory compactification
暂无分享,去创建一个
[1] E. Babalic,et al. Foliated eight-manifolds for M-theory compactification , 2014, Journal of High Energy Physics.
[2] M. Zambon,et al. Spin(7)-manifolds in compactifications to four dimensions , 2014, 1405.3698.
[3] V. Vinson. G Structures , 2014, Science Signaling.
[4] D. Tsimpis,et al. Type IIA supergravity and M -theory on manifolds with SU(4) structure , 2013, 1312.1692.
[5] Thomas W. Grimm,et al. Non-supersymmetric F-theory compactifications on Spin(7) manifolds , 2013, 1307.5858.
[6] Irina Gelbukh. The number of minimal components and homologically independent compact leaves of a weakly generic Morse form on a closed surface , 2013 .
[7] Irina Gelbukh. Close cohomologous Morse forms with compact leaves , 2013 .
[8] E. Babalic,et al. The geometric algebra of Fierz identities in arbitrary dimensions and signatures , 2013, 1304.4403.
[9] Irina Gelbukh. The number of split points of a Morse form and the structure of its foliation , 2013 .
[10] E. Babalic,et al. Geometric algebra techniques in flux compactifications (II) , 2012, 1212.6918.
[11] Mihai Damian,et al. Morse Theory and Floer Homology , 2013 .
[12] M. Zambon,et al. Holonomy transformations for singular foliations , 2012, 1205.6008.
[13] Irina Gelbukh. ON COLLINEAR CLOSED ONE-FORMS , 2011, Bulletin of the Australian Mathematical Society.
[14] Irina Gelbukh. Ranks of collinear Morse forms , 2011 .
[15] Irina Gelbukh. On compact leaves of a Morse form foliation , 2011 .
[16] Ken Richardson,et al. Smooth distributions are finitely generated , 2010, 1012.5641.
[17] S. Vandoren,et al. New potentials from Scherk-Schwarz reductions , 2010, 1008.4286.
[18] Irina Gelbukh. Number of minimal components and homologically independent compact leaves for a morse form foliation , 2009 .
[19] Irina Gelbukh. On the structure of a Morse form foliation , 2009 .
[20] Spiro Karigiannis. Desingularization of G2 manifolds with isolated conical singularities , 2008, 0807.3346.
[21] Spiro Karigiannis. Flows of G_2-structures, I , 2007, math/0702077.
[22] L. Nicolaescu. An Invitation to Morse Theory , 2007 .
[23] Iakovos Androulidakis,et al. The holonomy groupoid of a singular foliation , 2006, math/0612370.
[24] D. Tsimpis. M-theory on eight-manifolds revisited: Script N = 1 supersymmetry and generalized Spin(7) structures , 2005, hep-th/0511047.
[25] D. Constantin. Flux compactification of M‐theory on compact manifolds with Spin(7) holonomy , 2005, hep-th/0507104.
[26] Irina Gelbukh. Presence of minimal components in a Morse form foliation , 2005 .
[27] Frederik Witt,et al. Special metric structures and closed forms , 2005, math/0502443.
[28] A. D. Lewis,et al. Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.
[29] F. Witt. Generalised G2–Manifolds , 2004, math/0411642.
[30] Jr.,et al. M-theory on Spin(7) manifolds, fluxes and 3D, N=1 supergravity , 2003, hep-th/0312040.
[31] Michael Farber,et al. Topology of closed one-forms , 2004 .
[32] D. Alekseevsky,et al. Polyvector Super-Poincaré Algebras , 2003, hep-th/0311107.
[33] J. Sparks,et al. G structures, fluxes and calibrations in M theory , 2003, hep-th/0306225.
[34] R. Minasian,et al. Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G-structures , 2003, hep-th/0303127.
[35] S. Ivanov. Connections with torsion, parallel spinors and geometry of Spin(7) manifolds , 2001, math/0111216.
[36] K. Becker. A Note on compactifications on spin(7) - holonomy manifolds , 2000, hep-th/0011114.
[37] Dominic Joyce,et al. Compact Manifolds with Special Holonomy , 2000 .
[38] K. Honda. A NOTE ON MORSE THEORY OF HARMONIC 1-FORMS , 1999 .
[39] J. Levine,et al. Morse theory of harmonic forms , 1997, dg-ga/9711007.
[40] F. Martín-Cabrera. Orientable Hypersurfaces of Riemannian Manifolds with Spin(7)-Structure , 1997 .
[41] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[42] K. Becker,et al. M theory on eight manifolds , 1996, hep-th/9605053.
[43] D. Alekseevsky,et al. Classification of N-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of Spin (p,q) , 1995, math/9511215.
[44] Y. Kordyukov. Adiabatic limits and spectral geometry of foliations , 1995, dg-ga/9506005.
[45] I A Mel'nikova. A test for non-compactness of the foliation of a Morse form , 1995 .
[46] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[47] I. A. Mel'nikova. An indicator of the noncompactness of a foliation on Mg2 , 1993 .
[48] Michèle Vergne,et al. Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .
[49] Gilbert Levitt. Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie , 1990 .
[50] J. Szenthe,et al. Topics in Differential Geometry , 1988 .
[51] Gilbert Levitt. 1-formes fermées singulières et groupe fondamental , 1987 .
[52] M. Fernández. A classification of Riemannian manifolds with structure group Spin (7) , 1986 .
[53] P. Arnoux,et al. Sur l'unique ergodicité des 1-formes fermées singulières , 1986 .
[54] M. Freeman. Fully integrable Pfaffian systems , 1984 .
[55] K. Tod. All metrics admitting super-covariantly constant spinors , 1983 .
[56] A. Connes. A survey of foliations and operator algebras , 1982 .
[57] Hideki Imanishi,et al. On codimension one foliations defined by closed one forms with singularities , 1979 .
[58] Hideki Imanishi,et al. Structure of codimension 1 foliations without holonomy on manifolds with abelian fundamental group , 1979 .
[59] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[60] P. Stefan. Accessible Sets, Orbits, and Foliations with Singularities , 1974 .
[61] H. Sussmann. Orbits of families of vector fields and integrability of distributions , 1973 .
[62] A. Haefliger. Homotopy and integrability , 1971 .
[63] D. Tischler. On fibering certain foliated manifolds overS1 , 1970 .
[64] Alfred Gray,et al. Vector cross products on manifolds , 1969 .
[65] S. Chern. The geometry of $G$-structures , 1966 .
[66] J. Milnor. Lectures on the h-cobordism theorem , 1965 .