TiO2/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity

[1]  S. Komarneni,et al.  Fabrication and characterization of TiO2/Sepiolite nanocomposites doped with rare earth ions , 2018, Materials Letters.

[2]  N. Karak,et al.  Bio-derived aliphatic hyperbranched polyurethane nanocomposites with inherent self healing tendency and surface hydrophobicity: Towards creating high performance smart materials , 2018, Composites Part A: Applied Science and Manufacturing.

[3]  Feng-shan Zhou,et al.  Photocatalytic degradation of Orange G using sepiolite-TiO 2 nanocomposites: Optimization of physicochemical parameters and kinetics studies , 2018, Chemical Engineering Science.

[4]  S. Komarneni,et al.  Sepiolite-TiO2 nanocomposites for photocatalysis: Synthesis by microwave hydrothermal treatment versus calcination , 2017 .

[5]  M. Jaroniec,et al.  Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production , 2017 .

[6]  Yan Chen,et al.  Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity. , 2017, Journal of hazardous materials.

[7]  E. Pollet,et al.  Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading , 2017 .

[8]  D. Dionysiou,et al.  Use of Selected Scavengers for the Determination of NF-TiO2 Reactive Oxygen Species during the Degradation of Microcystin-LR under Visible Light Irradiation. , 2016, Journal of molecular catalysis. A, Chemical.

[9]  Feng-shan Zhou,et al.  Purification and defibering of a Chinese sepiolite , 2016 .

[10]  H. Steinhoff,et al.  Characterization of multifunctional β-NaEuF4/NaGdF4 core-shell nanoparticles with narrow size distribution. , 2016, Nanoscale.

[11]  B. Ohtani,et al.  Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts , 2015 .

[12]  Y. Sohn,et al.  Physicochemical properties of praseodymium hydroxide and oxide nanorods , 2015 .

[13]  B. Ohtani,et al.  Lanthanide co-doped TiO2: The effect of metal type and amount on surface properties and photocatalytic activity , 2014 .

[14]  R. Amal,et al.  TiO2-supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production , 2014 .

[15]  M. Batzill,et al.  Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films , 2014, Scientific Reports.

[16]  Xiaoxu Chen,et al.  Enhanced photocatalytic activity from Gd, La codoped TiO2 nanotube array photocatalysts under visible-light irradiation , 2013 .

[17]  S. Umare,et al.  Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2 , 2013 .

[18]  C. Karunakaran,et al.  Solvothermal Synthesis of CeO2–TiO2 Nanocomposite for Visible Light Photocatalytic Detoxification of Cyanide , 2013 .

[19]  M. Xing,et al.  Study of Synergistic Effect of Ce- and S-Codoping on the Enhancement of Visible-Light Photocatalytic Activity of TiO2 , 2013 .

[20]  B. Shi,et al.  One-Pot Facile Synthesis of Cerium-Doped TiO2 Mesoporous Nanofibers Using Collagen Fiber As the Biotemplate and Its Application in Visible Light Photocatalysis , 2013 .

[21]  S. Yin,et al.  Photocatalytic Properties of Nd and C Codoped TiO2 with the Whole Range of Visible Light Absorption , 2013 .

[22]  A. Ibhadon,et al.  Heterogeneous Photocatalysis: Recent Advances and Applications , 2013 .

[23]  Fa‐tang Li,et al.  N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity. , 2012, Journal of hazardous materials.

[24]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[25]  Shuiyuan Cheng,et al.  Enhanced catalytic performance of rare earth-doped Cu/H-Sep for the selective catalytic reduction of NO with C3H6 , 2012 .

[26]  Ying Li,et al.  Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor , 2012 .

[27]  A. Choudhury,et al.  Extending Photocatalytic Activity of TiO2 Nanoparticles to Visible Region of Illumination by Doping of Cerium , 2012, Photochemistry and photobiology.

[28]  Qingju Liu,et al.  Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO2 , 2011 .

[29]  T. Su,et al.  A study of parameter setting and characterization of visible-light driven nitrogen-modified commercial TiO2 photocatalysts. , 2011, Journal of hazardous materials.

[30]  Chaojun Liu,et al.  Preparation of titania nanotubes doped with cerium and their photocatalytic activity for glyphosate , 2011 .

[31]  Guoguang Liu,et al.  Gd3+, N-codoped trititanate nanotubes: Preparation, characterization and photocatalytic activity , 2011 .

[32]  V. S. Smitha,et al.  Mesoporous gadolinium doped titania photocatalyst through an aqueous sol–gel method , 2010 .

[33]  Thuy-Duong Nguyen-Phan,et al.  The role of rare earth metals in lanthanide-incorporated mesoporous titania , 2009 .

[34]  Younghun Kim,et al.  Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination , 2007 .

[35]  N. Nakayama,et al.  Preparation and characterization of TiO2-ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization , 2007 .

[36]  Qi Li,et al.  Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium oxide. , 2007, Environmental science & technology.

[37]  J. Nedeljković,et al.  Photoluminescence of anatase and rutile TiO2 particles. , 2006, The journal of physical chemistry. B.

[38]  Zhengwen Yang,et al.  Enhanced photocatalytic activity of microwave treated TiO2 pillared montmorillonite , 2006 .

[39]  Chunhua Yan,et al.  Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity , 2005 .

[40]  A. Xu,et al.  The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles , 2002 .

[41]  I. Willner,et al.  Lanthanide Oxide Doped Titanium Dioxide Photocatalysts: Effective Photocatalysts for the Enhanced Degradation of Salicylic Acid and t-Cinnamic Acid , 2001 .

[42]  Sridhar Komarneni,et al.  Microwave-hydrothermal processing of titanium dioxide , 1999 .

[43]  Wanli Kang,et al.  Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide , 2009 .