A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables
暂无分享,去创建一个
Alicia Troncoso Lora | José Cristóbal Riquelme Santos | Francisco Martínez-Álvarez | Jorge García-Gutiérrez | A. T. Lora | F. Martínez-Álvarez | Jorge García-Gutiérrez
[1] Joaquim Agostinho Barbosa Tinoco,et al. Application of data mining techniques in the estimation of the uniaxial compressive strength of jet grouting columns over time , 2011 .
[2] B. Koch,et al. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .
[3] James J. Little,et al. A Hybrid Conditional Random Field for Estimating the Underlying Ground Surface From Airborne LiDAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.
[4] Nicholas C. Coops,et al. Predicting building ages from LiDAR data with random forests for building energy modeling , 2014 .
[5] Daniel A. Friess,et al. Mangrove biomass estimation in Southwest Thailand using machine learning , 2013 .
[6] N. Pfeifer,et al. Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .
[7] A. Hudak,et al. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .
[8] Antonio Ruiz Cortés,et al. STATService: Herramienta de análisis estadístico como soporte para la investigación con Metaheurísticas , 2012 .
[9] Rafael Pino-Mejías,et al. Predicting the potential habitat of oaks with data mining models and the R system , 2010, Environ. Model. Softw..
[10] H WittenIan,et al. The WEKA data mining software , 2009 .
[11] M. Caley,et al. Global Patterns and Predictions of Seafloor Biomass Using Random Forests , 2010, PloS one.
[12] Jian Zhang,et al. Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data , 2013 .
[13] Saso Dzeroski,et al. Estimating vegetation height and canopy cover from remotely sensed data with machine learning , 2010, Ecol. Informatics.
[14] Sorin C. Popescu,et al. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .
[15] Liviu Theodor Ene,et al. Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models , 2010 .
[16] Yong Pang,et al. Characterizing forest canopy structure with lidar composite metrics and machine learning , 2011 .
[17] Jason W. Osbourne,et al. Four Assumptions of Multiple Regression That Researchers Should Always Test. , 2002 .
[18] Philip A. Townsend,et al. A pseudo-waveform technique to assess forest structure using discrete lidar data , 2011 .
[19] Amir-Masoud Eftekhari-Moghadam,et al. Combination of classification and regression in decision tree for multi-labeling image annotation and retrieval , 2013, Appl. Soft Comput..
[20] F. M. Danson,et al. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .
[21] G. Hay,et al. A Support Vector Regression Approach to Estimate Forest Biophysical Parameters at the Object Level Using Airborne Lidar Transects and QuickBird Data , 2011 .
[22] Roberta E. Martin,et al. A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping , 2014, PloS one.
[23] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[24] Jungho Im,et al. Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study Over Huntington Wildlife Forest in the Adirondack Park , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
[25] Francisco Herrera,et al. A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests , 2007, Expert Syst. Appl..
[26] Hailemariam Temesgen,et al. A Comparison of Selected Parametric and Non-Parametric Imputation Methods for Estimating Forest Biomass and Basal Area , 2014 .
[27] J. R. Quinlan. Learning With Continuous Classes , 1992 .
[28] G. F. Hughes,et al. On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.
[29] Eduardo González-Ferreiro,et al. Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data , 2011 .
[30] Jungho Im,et al. Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .
[31] Eduardo González-Ferreiro,et al. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities , 2012 .
[32] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..