Aquatic weed automatic classification using machine learning techniques
暂无分享,去创建一个
João Paulo Papa | Rodrigo Y. M. Nakamura | Luis A. M. Pereira | Dagoberto Martins | Guilherme F. S. De Souza | J. Papa | D. Martins | R. Nakamura | G. S. D. Souza | Luís A. M. Pereira | Rodrigo Nakamura
[1] 유정완,et al. Learning with Kernels , 2011 .
[2] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[3] Youxian Wen,et al. Identification of weed/corn using BP network based on wavelet features and fractal dimension , 2009 .
[4] Alexandre X. Falcão,et al. Motion segmentation and activity representation in crowds , 2009 .
[5] Chih-Jen Lin,et al. LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..
[6] S. Prasher,et al. Application of support vector machine technology for weed and nitrogen stress detection in corn , 2006 .
[7] T. F. Burks,et al. Evaluation of Neural-network Classifiers for Weed Species Discrimination , 2005 .
[8] Luciano da Fontoura Costa,et al. A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..
[9] Fatos T. Yarman-Vural,et al. BAS: a perceptual shape descriptor based on the beam angle statistics , 2003, Pattern Recognit. Lett..
[10] Jin-Young Jeong,et al. AE—Automation and Emerging Technologies: Weed–plant Discrimination by Machine Vision and Artificial Neural Network , 2002 .
[11] Alexandre X. Falcão,et al. Design of connected operators using the image foresting transform , 2001, SPIE Medical Imaging.
[12] S. Christensen,et al. Colour and shape analysis techniques for weed detection in cereal fields , 2000 .
[13] Vladimir Vapnik,et al. An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.
[14] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[15] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[16] Theodosios Pavlidis,et al. Optimal Correspondence of String Subsequences , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[17] T. Kohonen. The self-organizing map , 1990, Neurocomputing.
[18] Ming-Kuei Hu,et al. Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.
[19] João Paulo Papa,et al. Efficient supervised optimum-path forest classification for large datasets , 2012, Pattern Recognit..
[20] L. Plümer,et al. Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine , 2012 .
[21] Alberto Tellaeche,et al. A computer vision approach for weeds identification through Support Vector Machines , 2011, Appl. Soft Comput..
[22] Ricardo da Silva Torres,et al. Shape feature extraction and description based on tensor scale , 2010, Pattern Recognit..
[23] Salah Sukkarieh,et al. A Rotary-wing Unmanned Air Vehicle for Aquatic Weed Surveillance and Management , 2010, J. Intell. Robotic Syst..
[24] M. Tribus,et al. Probability theory: the logic of science , 2005 .
[25] Jorge Stolfi,et al. The image foresting transform: theory, algorithms, and applications , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[26] E. D. Velini,et al. Remoção mecânica de plantas aquáticas: análise econômica e operacional , 2002 .
[27] N. Otsu. A Threshold Selection Method from Gray-Level Histograms , 1979, IEEE Trans. Syst. Man Cybern..
[28] David G. Stork,et al. Pattern Classification , 1973 .