Aquatic weed automatic classification using machine learning techniques

[1]  유정완,et al.  Learning with Kernels , 2011 .

[2]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[3]  Youxian Wen,et al.  Identification of weed/corn using BP network based on wavelet features and fractal dimension , 2009 .

[4]  Alexandre X. Falcão,et al.  Motion segmentation and activity representation in crowds , 2009 .

[5]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[6]  S. Prasher,et al.  Application of support vector machine technology for weed and nitrogen stress detection in corn , 2006 .

[7]  T. F. Burks,et al.  Evaluation of Neural-network Classifiers for Weed Species Discrimination , 2005 .

[8]  Luciano da Fontoura Costa,et al.  A graph-based approach for multiscale shape analysis , 2004, Pattern Recognit..

[9]  Fatos T. Yarman-Vural,et al.  BAS: a perceptual shape descriptor based on the beam angle statistics , 2003, Pattern Recognit. Lett..

[10]  Jin-Young Jeong,et al.  AE—Automation and Emerging Technologies: Weed–plant Discrimination by Machine Vision and Artificial Neural Network , 2002 .

[11]  Alexandre X. Falcão,et al.  Design of connected operators using the image foresting transform , 2001, SPIE Medical Imaging.

[12]  S. Christensen,et al.  Colour and shape analysis techniques for weed detection in cereal fields , 2000 .

[13]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[14]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[15]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[16]  Theodosios Pavlidis,et al.  Optimal Correspondence of String Subsequences , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  T. Kohonen The self-organizing map , 1990, Neurocomputing.

[18]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[19]  João Paulo Papa,et al.  Efficient supervised optimum-path forest classification for large datasets , 2012, Pattern Recognit..

[20]  L. Plümer,et al.  Sequential support vector machine classification for small-grain weed species discrimination with special regard to Cirsium arvense and Galium aparine , 2012 .

[21]  Alberto Tellaeche,et al.  A computer vision approach for weeds identification through Support Vector Machines , 2011, Appl. Soft Comput..

[22]  Ricardo da Silva Torres,et al.  Shape feature extraction and description based on tensor scale , 2010, Pattern Recognit..

[23]  Salah Sukkarieh,et al.  A Rotary-wing Unmanned Air Vehicle for Aquatic Weed Surveillance and Management , 2010, J. Intell. Robotic Syst..

[24]  M. Tribus,et al.  Probability theory: the logic of science , 2005 .

[25]  Jorge Stolfi,et al.  The image foresting transform: theory, algorithms, and applications , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  E. D. Velini,et al.  Remoção mecânica de plantas aquáticas: análise econômica e operacional , 2002 .

[27]  N. Otsu A Threshold Selection Method from Gray-Level Histograms , 1979, IEEE Trans. Syst. Man Cybern..

[28]  David G. Stork,et al.  Pattern Classification , 1973 .