Efficient video similarity measurement and search

We consider the use of meta-data and/or video-domain methods to detect similar videos on the Web. Meta-data is extracted from the textual and hyperlink information associated with each video clip. In the video domain, we apply an efficient similarity detection algorithm called video signature. The idea is to form a signature for each clip by selecting a small number of its frames that are most similar to a set of random seed images. We then apply a statistical pruning algorithm to allow fast detection on very large databases. Using a small ground-truth set, we achieve 90% recall and 95% precision using only 8% of the total number of operations required without pruning. For a database of around 46,000 video clips crawled from the Web, the video signature technique significantly outperforms meta-data in precision and recall. We show that even better performance can be achieved by combining them together. Based on our measurements, each video clip in our database has, on average, 1.53 similar copies.

[1]  Jon M. Kleinberg,et al.  Two algorithms for nearest-neighbor search in high dimensions , 1997, STOC '97.

[2]  Fionn Murtagh,et al.  Comments on 'Parallel Algorithms for Hierarchical Clustering and Cluster Validity' , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[4]  Henry A. Kautz,et al.  Hardening soft information sources , 2000, KDD '00.

[5]  Rakesh Mohan,et al.  Video sequence matching , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[6]  Azriel Rosenfeld,et al.  Content-Based Access to Multimedia Information: From Technology Trends to State of the Art , 1999 .

[7]  Alexander Dekhtyar,et al.  Information Retrieval , 2018, Lecture Notes in Computer Science.

[8]  Avideh Zakhor,et al.  Video similarity detection with video signature clustering , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[9]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[10]  Milind R. Naphade,et al.  Novel scheme for fast and efficent video sequence matching using compact signatures , 1999, Electronic Imaging.

[11]  Vittorio Castelli,et al.  Image Databases: Search and Retrieval of Digital Imagery , 2002 .

[12]  Hayit Greenspan,et al.  A Probabilistic Framework for Spatio-Temporal Video Representation & Indexing , 2002, ECCV.

[13]  Donald A. Adjeroh,et al.  A distance measure for video sequence similarity matching , 1998, Proceedings International Workshop on Multi-Media Database Management Systems (Cat. No.98TB100249).

[14]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[15]  Takeo Kanade,et al.  Video skimming and characterization through the combination of image and language understanding , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[16]  Nuno Vasconcelos,et al.  On the complexity of probabilistic image retrieval , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[17]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[18]  A. Murat Tekalp,et al.  Hierarchical temporal video segmentation and content characterization , 1997, Other Conferences.

[19]  Andrei Z. Broder,et al.  A Technique for Measuring the Relative Size and Overlap of Public Web Search Engines , 1998, Comput. Networks.

[20]  Paul M. Aoki Generalizing "search" in generalized search trees , 1998, Proceedings 14th International Conference on Data Engineering.

[21]  Andreas Girgensohn,et al.  Time-Constrained Keyframe Selection Technique , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[22]  J. Ashley,et al.  Automatic and Semi-Automatic Methods for Image Annotation and Retrieval in QBIC , 1995 .

[23]  Giles,et al.  Searching the world wide Web , 1998, Science.

[24]  Rafail Ostrovsky,et al.  Efficient search for approximate nearest neighbor in high dimensional spaces , 1998, STOC '98.

[25]  Stanley Lemeshow,et al.  Sampling of Populations: Methods and Applications , 1991 .

[26]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[27]  Sanghyun Park,et al.  Indexing technique for similarity matching in large video databases , 2001, IS&T/SPIE Electronic Imaging.

[28]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[29]  Michael J. Swain Searching for multimedia on the World Wide Web , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[30]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[31]  Avideh Zakhor,et al.  Content analysis of video using principal components , 1998, IEEE Trans. Circuits Syst. Video Technol..

[32]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Iwan Setyawan,et al.  Watermarking digital image and video data. A state-of-the-art overview , 2000 .

[34]  Alan Hanjalic,et al.  Automated high-level movie segmentation for advanced video-retrieval systems , 1999, IEEE Trans. Circuits Syst. Video Technol..

[35]  Geoffrey Zweig,et al.  Syntactic Clustering of the Web , 1997, Comput. Networks.

[36]  Seth Pettie,et al.  An optimal minimum spanning tree algorithm , 2000, JACM.

[37]  Charles Elkan,et al.  An Efficient Domain-Independent Algorithm for Detecting Approximately Duplicate Database Records , 1997, DMKD.

[38]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[39]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[40]  Avideh Zakhor,et al.  Efficient video similarity measurement with video signature , 2002, Proceedings. International Conference on Image Processing.

[41]  Andrei Z. Broder,et al.  A Comparison of Techniques to Find Mirrored Hosts on the WWW , 2000, IEEE Data Eng. Bull..

[42]  Linda G. Shapiro,et al.  A flexible image database system for content-based retrieval , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[43]  Avideh Zakhor,et al.  Efficient video similarity measurement and search , 2000 .

[44]  Robert M. Haralick,et al.  Graph-theoretic clustering for image grouping and retrieval , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[45]  Roded Sharan,et al.  Algorithmic approaches to clustering gene expression data , 2001 .

[46]  Terence Kelly,et al.  Aliasing on the world wide web: prevalence and performance implications , 2002, WWW '02.

[47]  Arnold W. M. Smeulders,et al.  Image Retrieval by Multi-scale Illumination Invariant Indexing , 1998, Multimedia Information Analysis and Retrieval.

[48]  Sang Uk Lee,et al.  Efficient video indexing scheme for content-based retrieval , 1999, IEEE Trans. Circuits Syst. Video Technol..

[49]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[50]  H. Gabriela,et al.  Cluster-preserving Embedding of Proteins , 1999 .

[51]  Boon-Lock Yeo,et al.  Segmentation of Video by Clustering and Graph Analysis , 1998, Comput. Vis. Image Underst..

[52]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[53]  Hector Garcia-Molina,et al.  Detecting Digital Copyright Violations On The Internet , 1999 .

[54]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[55]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[56]  Ruud M. Bolle,et al.  Feature based indexing for media tracking , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[57]  C.-C. Jay Kuo,et al.  Hierarchical clustering techniques for image database organization and summarization , 1998, Other Conferences.

[58]  Pavel Zezula,et al.  M-tree: An Efficient Access Method for Similarity Search in Metric Spaces , 1997, VLDB.

[59]  Andrei Z. Broder,et al.  Mirror, Mirror on the Web: A Study of Host Pairs with Replicated Content , 1999, Comput. Networks.

[60]  C. J. van Rijsbergen,et al.  Report on the need for and provision of an 'ideal' information retrieval test collection , 1975 .

[61]  Wolfgang Effelsberg,et al.  VisualGREP: a systematic method to compare and retrieve video sequences , 1997, Electronic Imaging.

[62]  James C. French,et al.  Using the triangle inequality to reduce the number of comparisons required for similarity-based retrieval , 1996, Electronic Imaging.

[63]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[64]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[65]  Ellen M. Voorhees,et al.  Overview of the seventh text retrieval conference (trec-7) [on-line] , 1999 .

[66]  Wolfgang Effelsberg,et al.  On the detection and recognition of television commercials , 1997, Proceedings of IEEE International Conference on Multimedia Computing and Systems.

[67]  John M. Gauch,et al.  Real Time Video Scene Detection and Classification , 1999, Inf. Process. Manag..

[68]  Christos Faloutsos,et al.  Searching Multimedia Databases by Content , 1996, Advances in Database Systems.

[69]  H. Samet Contractive Embedding Methods for Similarity Searching in Metric Spaces , 2000 .

[70]  Craig Silverstein,et al.  Analysis of a Very Large Altavista Query Log" SRC Technical note #1998-14 , 1998 .

[71]  Shih-Fu Chang,et al.  VideoQ: a fully automated video retrieval system using motion sketches , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[72]  Alex Woronow Generating random numbers on a simplex , 1993 .

[73]  Giridharan Iyengar,et al.  Distributional clustering for efficient content-based retrieval of images and video , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[74]  Mohamed Abdel-Mottaleb,et al.  Image browsing using hierarchical clustering , 1999, Proceedings IEEE International Symposium on Computers and Communications (Cat. No.PR00250).

[75]  Milind R. Naphade,et al.  Multimodal pattern matching for audio-visual query and retrieval , 2001, IS&T/SPIE Electronic Imaging.

[76]  Ian H. Witten,et al.  Managing Gigabytes: Compressing and Indexing Documents and Images , 1999 .

[77]  Ruud M. Bolle,et al.  Comparison of sequence matching techniques for video copy detection , 2001, IS&T/SPIE Electronic Imaging.

[78]  A E Bostwick,et al.  THE THEORY OF PROBABILITIES. , 1896, Science.

[79]  Mohan S. Kankanhalli,et al.  Content-based representative frame extraction for digital video , 1998, Proceedings. IEEE International Conference on Multimedia Computing and Systems (Cat. No.98TB100241).

[80]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[81]  Hector Garcia-Molina,et al.  Finding near-replicas of documents on the Web , 1999 .

[82]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[83]  Martin Farach-Colton,et al.  COFE: A Scalable Method for Feature Extraction from Complex Objects , 2000, DaWaK.

[84]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[85]  Avideh Zakhor,et al.  Estimation of Web video multiplicity , 1999, Electronic Imaging.

[86]  Hans-Jörg Schek,et al.  A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces , 1998, VLDB.