A simplified guidance algorithm for lifting aeroassist orbital transfer vehicles
暂无分享,去创建一个
The derivation, logic, and performance of a simplified atmospheric guidance algorithm for aeroassist orbital-transfer vehicles (AOTVs) are presented. The algorithm was developed to meet the demands for an aerobraking trajectory guidance technique that was uncomplicated, easily integrated into existing trajectory programs, adaptable to a range of vehicle aerodynamic configurations, capable of performance equivalent to currently available guidance programs in compensating for dispersions in entry conditions, atmospheric conditions, and aerodynamic characteristics. The result was a hybrid lifting guidance algorithm combining the method of reference-profile generation with the method of predictor/corrector schemes. The resulting performance is good (less than 3 n.m. error from desired apogee despite uncertainties of + or - 50 percent atmospheric density, + or - 0.2 deg entry flight-path angle, or + or - 50 percent L/D. Combinations of these same dispersions with lesser magnitudes have also been successful, although performance with density 'pockets' within the atmosphere requires more analysis.