F AN: Finding Accurate iNductions

In this paper we present a machine-learning algorithm that computes a small set of accurate and interpretable rules. The decisions of these rules can be straight-forwardly explained as the conclusions drawn by a case-based reasoner. Our system is named F AN, an acronym for f inding a ccurate i n ductions. It starts from a collection of training examples and produces propositional rules able to classify unseen cases following a minimum-distance criterion in their evaluation procedure. In this way, we combine the advantages of instance-based algorithms and the conciseness of rule (or decision-tree) inducers. The algorithm followed by F AN can be seen as the result of successive steps of pruning heuristics. The main tool employed is that of the impurity level, a measure of the classification quality of a rule, inspired by a similar measure used in IB3. Finally, a number of experiments were conducted with standard benchmark datasets of the UCI repository to test the performance of our system, successfully comparing F AN with a wide collection of machine-learning algorithms.

[1]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[2]  T. V. George,et al.  Molecular Scattering of Ruby-Laser Light , 1965 .

[3]  Francisco Botana,et al.  SHAPE: a machine learning system from examples , 1995, Int. J. Hum. Comput. Stud..

[4]  William Fuller Brown,et al.  Theory of electric polarisation , 1952 .

[5]  Nathan Newman,et al.  Bi‐epitaxial grain boundary junctions in YBa2Cu3O7 , 1991 .

[6]  Antonio Bahamonde Inductive properties of lattices , 1994 .

[7]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[8]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[9]  Tony R. Martinez,et al.  Reduction Techniques for Instance-Based Learning Algorithms , 2000, Machine Learning.

[10]  John Clarke,et al.  Low‐frequency nuclear magnetic resonance and nuclear quadrupole resonance spectrometer based on a dc superconducting quantum interference device , 1991 .

[11]  Ralph Martinez,et al.  Reduction Techniques for Exemplar-Based Learning Algorithms , 1998 .

[12]  Steven L. Salzberg,et al.  Learning with Nested Generalized Exemplars , 1990 .

[13]  Antonio Bahamonde Rionda,et al.  Segmentación de valores numéricos para el aprendizaje a partir de ejemplos , 1995 .

[14]  Thomas G. Dietterich,et al.  An Experimental Comparison of the Nearest-Neighbor and Nearest-Hyperrectangle Algorithms , 1995, Machine Learning.

[15]  Sebastian Thrun,et al.  The MONK''s Problems-A Performance Comparison of Different Learning Algorithms, CMU-CS-91-197, Sch , 1991 .

[16]  Vinay Ambegaokar,et al.  VOLTAGE DUE TO THERMAL NOISE IN THE dc JOSEPHSON EFFECT. , 1969 .

[17]  Freeman,et al.  Hot electrons and energy transport in metals at millikelvin temperatures. , 1985, Physical review letters.

[18]  José Ranilla,et al.  Machine Learning Usefulness Relies on Accuracy and Self-Maintenance , 1998, IEA/AIE.

[19]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[20]  David W. Aha,et al.  A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations , 1990 .

[21]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[22]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[23]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[24]  Robert Benjamin Laibowitz,et al.  Quantum interference devices made from superconducting oxide thin films , 1987 .

[25]  José Ranilla,et al.  Autonomous Clustering for Machine Learning , 1999, IWANN.

[26]  Steven Salzberg,et al.  A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features , 2004, Machine Learning.

[27]  J. Kurkijaervi,et al.  INTRINSIC FLUCTUATIONS IN A SUPERCONDUCTING RING CLOSED WITH A JOSEPHSON JUNCTION. , 1972 .

[28]  Pines,et al.  Pulsed Fourier-transform NQR of 14N with a dc SQUID. , 1992, Physical review letters.

[29]  John Clarke,et al.  QUANTUM NOISE THEORY FOR THE dc SQUID , 1981 .

[30]  Simon Kasif,et al.  A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..

[31]  Nada Lavrac,et al.  The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains , 1986, AAAI.

[32]  John Clarke,et al.  QUANTUM NOISE THEORY FOR THE RESISTIVELY SHUNTED JOSEPHSON JUNCTION , 1980 .

[33]  Johannes Fürnkranz,et al.  Pruning Algorithms for Rule Learning , 1997, Machine Learning.

[34]  John William Strutt,et al.  XV. On the light from the sky, its polarization and colour , 1871 .

[35]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[36]  D. Kibler,et al.  Instance-based learning algorithms , 2004, Machine Learning.

[37]  T. V. George,et al.  Scattering of Ruby-Laser Beam by Gases , 1963 .

[38]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[39]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[40]  José Ranilla,et al.  Self-Organizing Cases to Find Paradigms , 1999, IWANN.

[41]  John Clarke,et al.  Measurements of the dynamic input impedance of a dc SQUID , 1985 .

[42]  Yeuvo Jphonen,et al.  Self-Organizing Maps , 1995 .

[43]  James E. Lukens,et al.  Measurement of the probability distribution of thermally excited fluxoid quantum transitions in a superconducting ring closed by a Josephson junction , 1974 .

[44]  Ron Kohavi,et al.  MLC++: a machine learning library in C++ , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[45]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[46]  Tony R. Martinez,et al.  An Empirical Comparison of Discretization Methods , 1995 .

[47]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[48]  Jadzia Cendrowska,et al.  PRISM: An Algorithm for Inducing Modular Rules , 1987, Int. J. Man Mach. Stud..

[49]  William J. Gallagher,et al.  Low-noise thin-film TlBaCaCuO dc SQUIDs operated at 77 K , 1989 .

[50]  Tony R. Martinez,et al.  Improved Heterogeneous Distance Functions , 1996, J. Artif. Intell. Res..

[51]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[52]  John Clarke,et al.  Hot‐electron limitation to the sensitivity of the dc superconducting quantum interference device , 1989 .

[53]  Peter Clark,et al.  Rule Induction with CN2: Some Recent Improvements , 1991, EWSL.

[54]  JOHANNES FÜRNKRANZ,et al.  Separate-and-Conquer Rule Learning , 1999, Artificial Intelligence Review.

[55]  John Clarke,et al.  Superconducting thin‐film gradiometer , 1978 .

[56]  Pedro M. Domingos,et al.  Unifying Instance-Based and Rule-Based Induction , 1996 .

[57]  José Ranilla,et al.  El Nivel de Impureza de una regla de clasificación aprendida a partir de ejemplos , 1997, Inteligencia Artif..

[58]  Pedro M. Domingos Unifying Instance-Based and Rule-Based Induction , 1996, Machine Learning.