Characterization of TiO2 Nanoparticles in Langmuir-Blodgett Films

In this work we have synthesized TiO2 nanoparticles, using either a sol–gel base catalysed process in the interior of CTAB reversed micelles (TiO2 CTAB sol), or the neutralization of a TiO2/H2SO4 solution in the interior of AOT reversed micelles. From the absorption and emission data of the TiO2 nanoparticles it is possible to conclude that in the sol–gel route there remains alkoxide groups in the structure, originating transitions lower than the energy gap of TiO2 semiconductor. These transitions disappear in the neutralization procedure, where the alkoxide groups are absent in the structure. We have assigned the observed indirect and direct optical transitions according to the anatase band structure. TiO2 Langmuir-Blodgett (LB) films were prepared either by direct deposition of titanium isopropoxide or by deposition of the TiO2 CTAB sol. These films showed photoluminescence, which was attributed to band-gap emission and to surface recombination of defect states.

[1]  C. Gout,et al.  Electronic band structure of titanium dioxide , 1977 .

[2]  N. Serpone Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis , 1997 .

[3]  A. Kanaev,et al.  Spectroscopical characterization of TiO2 powders prepared from stable colloidal solutions , 1998 .

[4]  J. Yates,et al.  TI3+ DEFECT SITES ON TIO2(110) : PRODUCTION AND CHEMICAL DETECTION OF ACTIVE SITES , 1994 .

[5]  David Jiles,et al.  Introduction to the Electronic Properties of Materials , 1994 .

[6]  N. Serpone,et al.  Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .

[7]  David F. Ollis,et al.  Photocatalytic purification and treatment of water and air : proceedings of the 1st International Conference on TiO[2] Photocatalytic Purification and Treatment of Water and Air, London, Ontario, Canada, 8-13 November, 1992 , 1993 .

[8]  N. Serpone,et al.  Subnanosecond Relaxation Dynamics in TiO2 Colloidal Sols (Particle Sizes Rp = 1.0-13.4 nm). Relevance to Heterogeneous Photocatalysis , 1995 .

[9]  C. Sanchez,et al.  Quantum size effect in TiO2 nanoparticles: does it exist? , 2000 .

[10]  Akira Fujishima,et al.  TiO2-mediated photodegradation of liquid and solid organic compounds , 2000 .

[11]  Zhu-Min Lai,et al.  ABSORPTION RED SHIFT IN TIO2 ULTRAFINE PARTICLES WITH SURFACIAL DIPOLE LAYER , 1991 .

[12]  Valery Shklover,et al.  Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride , 1993 .

[13]  A. Henglein,et al.  Photochemistry of Colloidal Semiconductors. 30. HPLC Investigation of Small CdS Particles , 1989 .

[14]  W. D. Ohlsen,et al.  Defects in Rutile. I. Electron Paramagnetic Resonance of Interstitially Doped n-Type Rutile , 1968 .

[15]  C. Sanchez,et al.  Synthesis and Characterization of Surface-Protected Nanocrystalline Titania Particles , 1998 .

[16]  Itamar Willner,et al.  Photosensitization of Quantum-Size TiO2 Particles in Water-in-Oil Microemulsions , 1994 .

[17]  A. Henglein,et al.  Photochemistry of colloidal semiconductors. 26. Photoelectron emission from CdS particles and related chemical effects , 1988 .

[18]  N. Kotov,et al.  MONOPARTICULATE LAYERS OF TITANIUM DIOXIDE NANOCRYSTALLITES WITH CONTROLLABLE INTERPARTICLE DISTANCES , 1994 .

[19]  M. L. Curri,et al.  Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye , 2003 .

[20]  M. Schubnell,et al.  Temperature dependence of the luminescence of TiO2 powder , 1993 .

[21]  P. Chester Electron Spin Resonance in Semiconducting Rutile , 1961 .

[22]  R. Riedel,et al.  Formation of ultra-thin ceramic TiO2 films by the Langmuir–Blodgett technique – a two-dimensional sol-gel process at the air–water interface , 1999 .

[23]  D. Fitzmaurice,et al.  Effect of surface chelation on the energy of an intraband surface state of a nanocrystalline titania film , 1993 .

[24]  Wei Zhang,et al.  Photoluminescence in anatase titanium dioxide nanocrystals , 2000 .