A local normal form theorem for infinitary logic with unary quantifiers

We prove a local normal form theorem of the Gaifman type for the infinitary logic L∞ω(Qu)ω whose formulas involve arbitrary unary quantifiers but finite quantifier rank. We use a local Ehrenfeucht-Fraisse type game similar to the one in [9]. A consequence is that every sentence of L∞ω(Qu)ω of quantifier rank n is equivalent to an infinite Boolean combination of sentences of the form (∃≥iy)ψ(y), where ψ(y) has counting quantifiers restricted to the (2n–1 – 1)-neighborhood of y. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Lauri Hella,et al.  Definability Hierarchies of Generalized Quantifiers , 1989, Ann. Pure Appl. Log..

[2]  Saharon Shelah,et al.  Distorted sums of models , 1996 .

[3]  Lauri Hella,et al.  Notions of Locality and Their Logical Characterizations over Finite Models , 1999, J. Symb. Log..

[4]  H. Gaifman On Local and Non-Local Properties , 1982 .

[5]  Leonid Libkin,et al.  On counting logics and local properties , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[6]  Ronald Fagin,et al.  On Monadic NP vs. Monadic co-NP , 1995, Inf. Comput..

[7]  H. Jerome Keisler,et al.  Shrinking games and local formulas , 2004, Ann. Pure Appl. Log..

[8]  Phokion G. Kolaitis,et al.  Generalized Quantifiers and Pebble Games on Finite Structures , 1995, Ann. Pure Appl. Log..

[9]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.

[10]  Lauri Hella Logical Hierarchies in PTIME , 1996, Inf. Comput..

[11]  Juha Nurmonen,et al.  On Winning Strategies with Unary Quantifiers , 1996, J. Log. Comput..

[12]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[13]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .